Grundgesetze der Arithmetik:

Gottlob Frege - Paragraphen in moderner Notation - Corrigenda nicht eingearbeitet

28. Februar 2006
Inhaltsverzeichniss.

Vorbemerkung ... Seite 1

M. Beweis des Satzes
, ⊢ ∀ a [a e v → a e u] →
(∞ = anz (u) → (∃ ∞ = anz (v) → anz (0) e (anz (v) e ≤nf))')

a) Beweis des Satzes
, ⊢ ∀ i [¬ i e (i e <q)] → (funk (q) → (x e (m e (v ∆ q))) →
(∞ = anz (m e ≤q) → ∞ = anz (x e (≤q |v|−1))))'

§ 1-6. Definition der Function ξ δ ζ . Sätze (349) bis (359) Seite 1

b) Beweis des Satzes
, ⊢ ∀ i [¬ i e (i e <q)] → (funk (q) → (x e (m e (v ∆ q))) →
(∞ = anz (m e ≤q) → ∞ = anz (x e (≤q |v|−1))))'

§ 7-20. Definition der Function ξ δ ζ . Sätze bis (408) Seite 8

c) Beweis des Satzes
, ⊢ ∀ i [¬ i e (i e <q)] → (funk (q) →
(∀ a [x e (a e ≤q) → ∃ e [¬ a e (e e (<q |v|))]] →
(x e (m e (v ∆ q))) → ∞ = anz (x e (≤q |v|−1))'))'

§ 21-24. Sätze bis (416) .. Seite 32

d) Beweis des Satzes
, ⊢ x e (c e ≤q) → (∃ e [¬ c e (e e (<q |v|))]] →
(¬ c e (c e <q) → (funk (q) → (x e (m e (v ∆ q))) →
anz (0) e [anz (x e (≤q |v|−1)) e ≤nf)]'))'

und Ende des Abschnittes M.

§ 25-28. Sätze bis (428) .. Seite 39

N. Beweis des Satzes
, ⊢ anz (0) e (anz (u) e ≤nf) → (∀ a [a e v → a e u] → anz (0) e (anz (v) e ≤nf))'
§ 45,46. Sätze bis (472) .. Seite 71

Ξ. Beweis des Satzes

, ⊢ ∀v [a ∋ w → ¬ a ∋ u] → (∀a [a ∋ v → ¬ a ∋ z] →
(anz (v) = anz (u) → (anz (z) = anz (w) →
anz (ext e (¬ e ∋ v → e ∋ z)) = anz (ext e (¬ e ∋ w → e ∋ u))))]

b) Beweis des Satzes

, ⊢ ∀q [∀a [¬ a ∋ z → ∀e [¬ a ∋ (e ∋ q)]]] →
(u ∋ (z ∋ q⁻¹ :=) → ¬ z ∋ (u ∋ q :=))] →
¬ anz (z) = anz (u).

§ 33-36. Sätze bis (453) .. Seite 56

S.VII

b) Beweis des Satzes

, ⊢ ∀a [¬ a ∋ v → ∀e [¬ a ∋ (e ∋ p)]] →
(∀a [¬ a ∋ z → ∀e [¬ a ∋ (e ∋ q)]] →
(v ∋ (w ∋ p :=) → (z ∋ (w ∋ q :=)) →
ext e (¬ e ∋ v → e ∋ z) [ext e (¬ e ∋ w → e ∋ u) (q ∪ p) :=)])

§ 37-40. Definition der Funktion ξ ∪ ζ. Sätze bis (463) Seite 61

§ 41-44. Sätze bis (469) .. Seite 66

O. Folgesätze.

a) Beweis des Satzes

, ⊢ ∀a [a ∋ u → a ∋ w] → (∀a [a ∋ z → a ∋ v] →
(anz (ext e (¬ e ∋ v → e ∋ z)) = anz (ext e (¬ e ∋ w → e ∋ u))) →
(anz (z) = anz (u) → anz (v) = anz (w)))]

§ 45,46. Sätze bis (472) .. Seite 71
b) Beweis des Satzes

\[\vdash \forall a \left[a \in u \rightarrow a \in w \right] \rightarrow \left(\text{anz} (u) \in \left(\text{anz} (u) \in \text{nf} \right) \rightarrow \text{anz} (w) \in \left(\text{anz} (w) \in \text{nf} \right) \right) \]

§ 47-50. Sätze bis (476) ... Seite 73

c) Beweise der Sätze

\[\vdash \neg \forall a \left[\neg \text{anz} (w) \in \left(a \in \text{nf} \right) \right] \]

und

\[\vdash \text{anz} (u) = \infty \rightarrow \left(\forall a \left[a \in u \rightarrow a \in w \right] \rightarrow \neg \text{anz} (0) \in \left(\text{anz} (w) \in \text{nf} \right) \right) \]

§ 51-54. Sätze bis (484) ... Seite 78

III. Die reellen Zahlen.

a) Grundsätze des Definirens.

§ 55. Vorbemerkung .. Seite 81

1. Grundsatz der Vollständigkeit.

§ 56. Der Begriff muss scharf begrenzt sein Seite 81
§ 57. Unzulänglichkeit des stückweisen Definirens " 82
§ 58. Entschuldigung des stückweisen Definirens durch die Entwicklung der Wissenschaft .. " 82
§ 59. Unhaltbarkeit von Heines Definition der Gleichheit von Zahlzeichen " 84
§ 60. Vermuthliche Vertheidigung Heines und ihre Widerlegung " 84
§ 61. Ohne ungültige Definitionen haben wir nicht endgültige Lehrsätze . . " 85
§ 62. Für die Beziehungen gilt das Entsprechende. Die Beziehungen des Größerseins und der Gleichheit " 85
§ 63. Folgerung für die Functionen erster Stufe mit einem Argumente . . . " 86
§ 64. Die entsprechende Forderung für die Functionen erster Stufe mit zwei Argumenten .. " 86
§ 65. Dasselbe gilt auch von den arithmetischen Zeichen, die Functionsnamen sind .. " 87

2. Grundsatz der Einfachheit des erklärten Ausdrucks

§ 66. Erläuterung und Begründung dieses Grundsatzes Seite 88
§ 67. Verstösse gegen beide Grundsätze des Definirens zugleich " 89

b) Cantors Lehre von den Irrationalzahlen.

§ 70. Einwand von Illigens gegen Cantors Lehre.

§ 72. Pringsheims Satz, dass die rationalen Zahlen wohl bestimmte Quantitäten vorstellen können, aber nicht müssen.

§ 73. Die reelle Zahl ist ein Grössenverhältnis.

§ 75. Die quantitative Bestimmung concreter Grösse durch abstrakte nach Cantor. Wir haben in dem von Cantor erklärten Ausdrucke nichts der Erklärung Fähiges.

§ 77. Versuch, die Cantorschen Erklärungen so aufzufassen, dass die Zahlgrössen nicht Zeichen, sondern etwa abstrakte Gedankendinge seien. Dies misslingt, weil die Zuordnung erst möglich ist, wenn man das Zuzuordnende kennt.

§ 80. Cantors Festsetzung, dass einer Fundamentalreihe, deren Glieder sämtlich die rationale Zahl a sind, diese Zahl a zugeordnet werde, enthält einen Widerspruch und bringt uns dem Ziele nicht näher.

§ 82. Die Definitionen der Summe, des Grösserseins u. s. w. scheinen die Irrationalzahlen schaffen zu sollen, ein Verstoss gegen unsern zweiten Grundsatz.

§ 83. Die Täuschung verschwindet, wenn man statt der alten, schon erklärten Wörter und Zeichen ganz neue nimmt.

§ 84. Zusammenfassender Rückblick auf die Ergebnisse der Prüfung der Cantorschen Theorie.

§ 85. Eine früher von Cantor gegebene Darstellung ist gleichfalls fehlerhaft.

§ 86. Vorläufige Kennzeichnung dieser Theorien ... Seite 101
§ 87. Heines grundlegende Aeusserung ... „ 102
§ 88. Thomaes grundlegende Aeusserung ... „ 102
§ 89. Grund für die Vorziehung der formalen vor der inhaltlichen Arithmetik „ 103
§ 90. Die formale Arithmetik und die Begriffsschrift als Spiele „ 103
§ 91. In der formalen Arithmetik drücken Gleichungen und Ungleichungen keine Gedanken aus; auf diesem Standpunkte sind also auch keine Anwendungen möglich .. „ 104
§ 92. Die formale Arithmetik entlastet sich auf Kosten der Wissenschaften, in denen Anwendungen gemacht werden .. „ 105
§ 93. Im Rechenspiele giebt es weder Lehrsätze, noch Beweise, noch Definitionen, wohl aber in der Theorie dieses Spiels. Die Möglichkeit einer Theorie des Rechenspieles ist zweifelhaft „ 105
§ 94. Man braucht von den eigentlichen Zahlen im Rechenspiele garnichts „ 106
§ 95. Thomaes Ausdruck, den Zahlzeichen werde in Bezug auf ihr Verhalten zu den Spielregeln ein Inhalt beigelegt „ 106
§ 96. Thomaes Ausdrücke, den Schachfiguren werden gewisse Eigenschaften beigelegt und sie seien äussere Zeichen für ihr durch diese Eigenschaften bedingtes Verhalten .. „ 107
§ 97. Thomaes Zugeständnisse, dass die Zahlfiguren zuweilen auch als Zahlzeichen gebraucht werden .. " 107
§ 98. Was sind Zeichen? .. " 108
§ 99. Gleichgestaltete Zeichen sind nicht dasselbe Zeichen " 109
§ 101. Das Rechnen in der formalen Arithmetik " 110
§ 102. Was ist Addiren, Multipliziren, Subtrahiren im Rechenspiele? " 111
§ 103. Die Null, die negativen und gebrochenen Zahlen bei Thomaes " 112
§ 104. Die Rechenoperationen nach Heine ... " 112
§ 105. Die Einführung des Negativen bei Heine " 113
§ 106. Die Rechnungsregeln Thomaes .. " 114
§ 107. Sinn der Thomaeschens Formeln als Spielregeln " 115
§ 108. Die Spielhandlungen im Rechenspiele. Doppelte Rolle der Gleichungen .. " 115
§ 110. Regeln der formalen Arithmetik, Gesetze der inhaltlichen Arithmetik und Sittengesetze .. " 117
§ 111. Unvollständigkeit des Thomaeschens Regelverzeichnisses " 117
§ 112. Die formale Subtraction als Umkehrung der formalen Addition " 118
§ 113. Die Ausnahmestellung der Null, weist auf eine verbietende Regel hin " 118
§ 114. Versuch, diese verbietende Regel auszusprechen " 120
§ 115. Unsicherheit bei der Anwendung dieser Regel " 120
§ 116. Fernere Unzulänglichkeit des Thomaeschens Regel Verzeichnisses und Versuch der Abhilfe .. " 120
§ 117. Thomaes Ausspruch, dass die Division nicht immer widerspruchsfrei vollzogen werden könne .. " 121
§ 118. Thomaes Ausspruch über die Widerspruchsfreiheit der Gebilde " 121
§ 119. Lässt die formale Arithmetik eine vollkommen widerspruchsfreie Be- gründung zu? .. " 122
§ 120. Nicht jede inhaltliche Arithmetik gründet sich auf Sinneswahrneh- mung .. " 123
§ 121. Das Ordnem in Reihe und das Grössersein bei Thomae " 123
§ 122. Positive und negative, gemeine Zahlfiguren bei Thomahe " 124
§ 123. Das Unendliche bei Thomaes .. " 124
§ 124. Einführung des Irrationalen. Heines Zahlenreihen " 125
§ 125. Thomaes Definition der unendlichen Folge " 126
§ 126. Thomaes Nullfolgen. Zahlfiguren, die nicht hingeschrieben sind, sind nicht vorhanden .. " 126
§ 127. Können alle Terme einer Folge nicht angeschrieben werden? " 127
§ 128. Der Formalarithmetiker wird seinem Plane untreu " 128
§ 129. Versuch, Thomaes Meinung besser zu treffen. Hindernisse " 128
§ 130. Weder der Umstand, dass ein Satz aus der Vorschrift für die Fortsetzung der Reihe folge, noch dieser Satz selbst, kann zur Definition der Nullvorschrift dienen .. " 129

§ 131. Wegen der Endlichkeit der Menge der Zahlfiguren ist die formale Arithmetik unfähig zur Definition des Irrationalen. Verhüllung dieses Sachverhalts .. " 129

§ 132. Die Gruppe »(0 0 0 . . . 0 . . .)« ist keine Zahlenfolge " 130

§ 133. Die Gruppe »(a₁ a₂ a₃ . . . aₙ . . .)« ist ohne Rücksicht auf ihre Zusammensetzung wie ein einzelner Buchstabe aufzufassen " 131

§ 134. Der Folge wird ein Zeichen durch das Gleichheitszeichen zugeordnet. Wie ist die entstehende Gleichung aufzufassen? " 131

§ 136. Scheitern der formalen Arithmetik ... " 133

§ 137. Rückblick auf die formale Arithmetik .. " 133

§ 138. Die drei Hauptvorzüge der Dedekindschen Lehre. Schrofer Gegen- satz zur formalen Arithmetik .. Seite 134

§ 140. Ein schrankenloses Schaffen wäre zu bequem, als dass es erlaubt sein könnte ... " 135

§ 142. Eine grössere Form strengere des Beweises würde den Fehler offenba- ren. Beweise, die mit der imaginären Einheit geführt werden, sind oft ebenso mangelhaft .. " 137

§ 143. Schöpferische Definitionen von O. Stolz. Folgenschwere Einschrän- kung der Schöpfermacht .. " 137

§ 144. Aus dem Nichtoffenbarsein eines Widerspruchs kann nicht auf dessen Nichtbestehen geschlossen werden " 138

§ 146. Unsere Einführung der Werthverlaufe ist verschieden von dem Zahlenschaufen der Mathematiker .. " 140

§ 147. Unser Verfahren ist eigentlich nicht neu, wird mit vollem Bewusst- sein seiner logischen Zulässigkeit ausgeübt. Ohne es wäre eine wis- senschaftliche Begründung der Mathematik unmöglich " 140
e) Weierstrassens Lehre.

§ 148. Schwierigkeiten, die der genauen Erfassung und Beurtheilung dieser Lehre entgegenstehen .. Seite 141

§ 149. Der Pfeffernussstandpunkt hinsichtlich der Anzahlen " 141

§ 150. Die beiden Fehler der Weierstrassischen Lehre von den Anzahlen, Einschmuggelung der eigentlichen Zahl " 142

§ 152. Verschiedene Bedeutungen des Pluszeichens. Das Wunder der wiederholt vorkommenden Gegenstände .. Seite 142

§ 153. Die Zahl als Aggregat abstrakter Einheiten oder der wiederholt vorkommenden Eins. Die drei Auffassungen der Zahl bei Weierstrass ...

§ 155. Die Anerkennung der höheren Zahlen beruht nach Kossak auf ihrer Definition. Ein Schaffen, dessen Berechtigung zweifelhaft bleibt Seite 144

§ 156. Formale und inhaltliche Arithmetik. Beide Wege haben bisher nicht zum Ziele geführt .. Seite 145

§ 160. Misslingene Versuche, das Wort „Grösse“ zu erklären Seite 147

§ 163. Beispiel: Abstandsrelationen .. Seite 149

§ 164. Vorläufige Entkräftung unseres Bedenkens im § 159 Seite 150

2. Grössenlehre.

A. Sätze über die Zusammensetzung von Relationen im Allgemeinen.

§ 165. Das associative Princip ist für alle Zusammensetzungen von Relationen zu beweisen .. Seite 151

§ 166. Beweis des associativen Princips. Sätze von (485) bis (491) Seite 151

§ 167-170. Das commutative Princip in gewissen Reihen. Definition der Function \(* \xi \). Sätze bis (502). .. Seite 155

Sätze, in denen die Aehnlichkeit der Umkehrung der Relationen mit der Umkehrung des Vorzeichens hervortritt.

§ 171,172. Sätze bis (508) .. Seite 157

B. Die Positivalklasse.

a) Definitionen der Functionen \(\partial \xi \) und \(posval (\xi) \) und Folgerungen.

§ 173,174. Definition der Function \(\partial \xi \) und Folgerungen. Sätze bis (517) Seite 158

§ 175,176. Positivalklasse. Definition der Function posval (\(\xi) \) und Folgerungen. Sätze bis (544) .. Seite 160

b) Beweis des Satzes

\(\vdash posval (s) \rightarrow (q \triangleright s \rightarrow (p \triangleright s \rightarrow q^{-1} \circ q = p \circ p^{-1})) \)
§ 177,178. Sätze bis (559) Seite 165

c) Beweis des Satzes

\[\vdash p \circ (s \rightarrow (p^{-1} \circ s \rightarrow (posval(s) \rightarrow (r \circ s \rightarrow
\neg p \circ s \rightarrow p = r^{-1} \circ r)))) \]

§ 179,180. Sätze bis (561) Seite 170
d) Beweise der Sätze

\[\vdash q \circ (s \rightarrow (posval(s) \rightarrow (p \circ s \rightarrow (p^{-1} \circ p \circ q = q))) \]
\[\vdash p \circ (s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow q \circ p^{-1} \circ p = q))) \]

und Folgerungen.

§ 181-186. Sätze bis (585) Seite 171
e) Sätze über das Grössere und Kleinere in einer Positivklasse.

§ 187-192. Sätze bis (589) Seite 175

Γ. Die Grenze.

Definitionen der Functionen \(\xi_\zeta \) und \(\text{grenz}_\xi \)

§ 193-196. Es giebt nur eine \(s \)-Grenze von \(u \). Sätze bis (602) Seite 177

Δ. Die Positivklasse.

a) Definition der Function \(\text{pos}(\xi) \) und Folgerungen.

§ 197,198. (Sätze bis (607) Seite 180

| S.XIV

b) Beweis des Satzes

\[\vdash \text{pos}(s) \rightarrow (p \circ s \rightarrow (a \circ s \rightarrow a \circ (p \circ \text{arch}_\xi))) \]
(Commutatives Prinzip in einer Positivklasse.)

§ 199-214. Definitionen der Function \(\text{arch}_\zeta \). Sätze bis (636) Seite 181

E. Beweis des Satzes

\[\vdash p \circ q^{-1} \circ s \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow q^{-1} \circ p \circ s))) \]

§ 215,216. Sätze bis (638) Seite 197

b) Beweis des Satzes

\[\vdash p^{-1} \circ q \circ s \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow q \circ p^{-1} \circ s))) \]
§ 217,218. Sätze bis (641) ... Seite 200

c) Beweis des Satzes

\[\vdash c \circ s \rightarrow (d \circ s \rightarrow \neg ((c^{-1} \circ d) \circ a \circ s \rightarrow \neg (d^{-1} \circ c) \circ a \circ s)) \rightarrow (\text{posval}(s) \rightarrow c = d) \]

§ 219,220. Sätze bis (644) ... Seite 203
d) Beweis des Satzes

\[\vdash b^{-1} \circ p \circ s \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (b^{-1} \circ q \circ s \rightarrow (\text{posval}(s) \rightarrow (b \circ (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s)))))) \]

§ 221-230. Sätze bis (666) ... Seite 205

e) Beweis des Satzes

\[\vdash \forall e [e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s))] \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow \neg a \circ s)))) \]

und Ende des Abschnittes E.

§ 231-238. Sätze bis (678) ... Seite 220

Z. Beweis des Satzes

\[\vdash q \circ d \circ s \rightarrow (p \circ d \circ s \rightarrow (\text{pos}(s) \rightarrow q \circ p = p \circ q)) \]

§ 239-244. Sätze bis (689) ... Seite 229

§ 245. Die nächste Aufgabe ... Seite 234

Anhänge.
1. Tafel der Definitionen .. Seite 235
2. Tafel der wichtigeren Lehrsätze Seite 236
Nachwort ... Seite 242
Wörterverzeichnis .. Seite 252
Vorbemerkung.

Es mögen hier zwei Sätze nochmals aufgeführt werden, die im ersten Band bei der Ableitung von (281) auf S. 208 die Buchstaben δ und η als Abzeichen erhalten hatten, um sie mit anderen Abzeichen zu versehen, mit denen sie fernerhin angezogen werden sollen.

\[\vdash x \delta (c \delta \leq q) \rightarrow (r \delta (o \delta < q)) \rightarrow (\neg \ a \delta (o \delta < q) \rightarrow (\text{funk}(q) \rightarrow (c \delta (o \delta q) \rightarrow (\neg \ e \delta (c \delta < q) \rightarrow (x \delta (r \delta \leq q) \rightarrow r \delta (zw^q_{(x,c)})))))) \]

\[\vdash x \delta (c \delta \leq q) \rightarrow (\neg \ a = r \rightarrow (c \delta (o \delta q) \rightarrow (r \delta (zw^q_{(x,c)})) \rightarrow r \delta (zw^q_{(x,c)})))) \]

M. Beweis des Satzes

\[\vdash \forall a \ [a \delta v \rightarrow a \delta u] \rightarrow (\infty = \text{anz}(u) \rightarrow (\neg \ \infty = \text{anz}(v) \rightarrow \text{anz}(0) \delta (\text{anz}(v) \delta \leq_{nf}))) \]

a) Beweis des Satzes

\[\vdash \text{funk}(q) \rightarrow (\forall a \ [x \delta (a \delta (v \delta q))] \rightarrow (\forall i \ [\neg \ i \delta (i \delta < q)] \rightarrow \forall e \ [x \delta (e \delta (\leq_q v))])) \]

§ 1. Zerlegung.

Den in der Hauptüberschrift angeführten Satz können wir in Worten so wiedergeben: „Wenn ein Begriff einem zweiten übergeordnet ist, und wenn Endlos die Anzahl des ersten ist, so ist die Anzahl des zweiten auch Endlos, oder sie ist endlich.“

Wir wissen zunächst nach (207), dass die unter den \(v \)-Begriff fallenden Gegenstände sich in eine einfache Reihe ordnen lassen, die mit einem bestimmten Gegenstande anfängt und ohne in sich zurückzukehren endlos fortläuft. Heben wir nun aus dieser Reihe die Gegenstände heraus, die unter den \(v \)-Begriff fallen, so ist zu beweisen, dass diese sich — wenn es deren giebt — ebenfalls in eine Reihe ordnen lassen, die entweder auch endlos fortläuft oder mit irgendeinem Gegenstande endet. Mit den Sätzen (263) und (327) gelangen wir dann an’s Ziel. Diese Ordnung geschieht am einfachsten so, dass wir mit dem Gegenstande der ursprünglichen Reihe anfangen, der als der erste unter den \(v \)-Begriff fällt, und dann immer zu demjenigen weitergehen, der zunächst in der ursprünglichen Reihe unter den \(v \)-Begriff fällt. Wir haben zunächst zu zeigen, dass es in der mit \(x \) anfangenden \(q \)-Reihe einen Gegenstand gibt, der zuerst unter den \(v \)-Begriff fällt, und dann immer zu demjenigen weitergehen, der zunächst in der ursprünglichen Reihe unter den \(v \)-Begriff fällt. Was heisst das nun „der Gegenstand \(y \) fällt in der mit \(x \) anfangenden \(q \)-Reihe zuerst unter den \(v \)-Begriff“? \(y \) muss unter den \(v \)-Begriff fallen und der mit \(x \) anfangenden \(q \)-Reihe angehören; aber kein Gegenstand, der ihm in dieser Reihe vorhergeht, darf unter den \(v \)-Begriff fallen. In unserm Zeichen ist

\[\neg \ (\Gamma \delta (\Delta \delta (\leq_T^{(0)})) \rightarrow \Gamma \delta (\Delta \delta (\leq_T o \leq_T^{(0)}))) \]

der Wahrheitswert davon, dass \(\Delta \) der mit \(\Gamma \) anfangenden \(T \)-Reihe angehört und unter den \(\Theta \)-Begriff fällt, dass es aber keinen Gegenstand gibt, welcher der mit \(\Gamma \) anfangenden \(T \)-Reihe angehört, unter den \(\Theta \)-Begriff fällt und dem \(\Delta \) in der \(T \)-Reihe vorhergeht. Wir definiren nun:

\[v \delta q := \text{ext} a \text{ext} e \ (\neg \ (e \delta (\alpha \delta (\leq_q v)) \rightarrow e \delta (\alpha \delta (\leq_q (\leq_q v)))) \] (\(\Sigma \))
Danach ist \(\Gamma \vdash (\Delta \vdash (\Theta \vdash \top)) \) der Wahrheitswerth davon, dass \(\Delta \) zuerst in der mit \(\Gamma \) anfängenden \(\top \)-Reihe unter den \(\Theta \)-Begriff fällt. Demnach haben wir in der zweiten Überschrift im Wesentlichen unsern Satz. Wir beweisen ihn mit dem Satze

\[
\vdash x \varnothing (\gamma \varnothing (\delta \varnothing (\epsilon \varnothing \delta q))) \rightarrow \\
(\forall e \vdash (zw_{(x,y)})) \cdot
\]

den wir in Worten so aussprechen: „Es gibt keinen Gegenstand, welcher der von \(x \) bis \(y \) laufenden \(q \)-Reihe angehört und unter den \(\epsilon \)-Begriff fällt, wenn es in der mit \(x \) anfangenden \(q \)-Reihe keinen Gegenstand gibt, der als erster unter den \(\epsilon \)-Begriff fällt, und wenn \(y \) der mit \(x \) anfangenden \(q \)-Reihe angehört.“

Giebt es nun ein Glied der mit \(x \) anfangenden \(q \)-Reihe, das unter den \(\epsilon \)-Begriff fällt, so können wir dies als \(y \) in dem Satze (\(\alpha \)) annehmen und gelangen so an’s Ziel unseres Abschnittes \(a \). Den Satz (\(\alpha \)) leiten wir mit (152) ab und bedürfen dazu des Satzes

\[
\vdash x \varnothing (d \varnothing (d \varnothing \epsilon v \rightarrow \neg e \varnothing (zw_{(x,a)}))) \cdot
\]

Wir unterscheiden dabei die Fälle, dass \(a \) unter den \(\epsilon \)-Begriff fällt und den entgegengesetzten. Im zweiten Falle zeigen wir mit dem Satze (280b)\(^2\), dass dann auch kein Glied der von \(x \) bis \(a \) laufenden \(q \)-Reihe unter den \(\epsilon \)-Begriff fällt.

S.3 | § 2. Aufbau.

\[
280b \vdash x \varnothing (d \varnothing \epsilon v \rightarrow \neg e \varnothing (zw_{(x,a)})) \rightarrow \\
(d \varnothing (a \varnothing q) \rightarrow (e \varnothing (zw_{(x,a)})) \rightarrow (\forall e \vdash (zw_{(x,a)}))) \\
\times \\
\vdash x \varnothing (d \varnothing \epsilon v \rightarrow \neg e \varnothing (zw_{(x,a)})) \rightarrow \\
(d \varnothing (a \varnothing q) \rightarrow (e \varnothing (zw_{(x,a)})) \rightarrow (\forall e \vdash (zw_{(x,a)})))) \\
(\alpha)
\]

\((IIIa) : \) — — — — — — —

\[
\vdash x \varnothing (d \varnothing \epsilon v \rightarrow \neg e \varnothing (zw_{(x,a)})) \rightarrow \\
(d \varnothing (a \varnothing q) \rightarrow (e \varnothing (zw_{(x,a)})) \rightarrow (e \varnothing v \rightarrow a \varnothing v))) \cdot
\]

\((IIa) :: \) — — — — — — —

\[
\vdash x \varnothing (d \varnothing \epsilon v \rightarrow \neg e \varnothing (zw_{(x,a)})) \rightarrow \\
(d \varnothing (a \varnothing q) \rightarrow (e \varnothing (zw_{(x,a)})) \rightarrow (e \varnothing v \rightarrow a \varnothing v))) \cdot
\]

\(349 \)

\(^2\)Man vergl. die Vorbemerkung.
§ 3. Zerlegung.

Wir kommen, um den Satz (β) des § 1 zu beweisen, zu dem Falle, dass a unter den v-Begriff fällt. Dann fällt a selbst in der mit x anfangenden q-Reihe zuerst unter den v-Begriff; es gibt also ein solches Glied. Wir haben den Satz

\[\vdash a \varphi \rightarrow (x \varphi (d \varphi \leq q)) \rightarrow (c \varphi ((x, zw_q^q))) \rightarrow (d \varphi (a \varphi q)) \rightarrow \]

\[(\forall x \varphi v \rightarrow \neg e \varphi (zw_q^q_{[x,q]})) \rightarrow x \varphi (a \varphi (v \delta q))) \]

zu beweisen. Wir brauchen dazu den aus (Σ) leicht folgenden Satz

\[\vdash a \varphi \rightarrow (x \varphi (d \varphi \leq q)) \rightarrow (d \varphi (a \varphi q)) \rightarrow \]

\[(\forall x \varphi (a \varphi (<_q \circ \leq_q))) \rightarrow x \varphi (a \varphi (v \delta q))) \]

§ 4. Aufbau.

\[\Sigma \vdash \text{ext } a \text{ ext } c \ (\neg (c \varphi (\alpha \varphi <_q))) \rightarrow x \varphi (\alpha \varphi (<_q \circ \leq_q))) \rightarrow v \varphi q \]

(10) : 279 \[\vdash \neg a \varphi (a \varphi <_q) \rightarrow (funk q) \rightarrow (d \varphi (a \varphi q)) \rightarrow \neg d \varphi (d \varphi <_q)) \]

\[(\forall x \varphi (a \varphi (<_q \circ \leq_q))) \rightarrow x \varphi (a \varphi (v \delta q))) \]

(15, 197) :: 279 \[\vdash a \varphi \neg (x \varphi (a \varphi <_q)) \rightarrow (d \varphi (a \varphi q)) \rightarrow \neg d \varphi (d \varphi <_q)) \]

\[(\forall x \varphi (a \varphi (<_q \circ \leq_q))) \rightarrow x \varphi (a \varphi (v \delta q))) \]

(137) :: 279 \[\vdash a \varphi \neg (x \varphi (d \varphi \leq q)) \rightarrow (d \varphi (a \varphi q)) \rightarrow \neg d \varphi (d \varphi <_q)) \]

\[(\forall x \varphi (a \varphi (<_q \circ \leq_q))) \rightarrow x \varphi (a \varphi (v \delta q))) \]

(351)

\[(\neg a \varphi (a \varphi <_q) \rightarrow (funk q) \rightarrow (d \varphi (a \varphi q)) \rightarrow \neg d \varphi (d \varphi <_q)) \]

(280a) : 279 \[\vdash a \varphi \neg (x \varphi (d \varphi \leq q)) \rightarrow (c \varphi (a \varphi <_q) \rightarrow (\neg a \varphi (a \varphi <_q)) \rightarrow (funk q) \rightarrow \]

\[(d \varphi (a \varphi q)) \rightarrow (x \varphi (c \varphi \leq_q) \rightarrow c \varphi (zw_q^q_{[x,q]}))) \]

(352)

\[(\neg a \varphi (a \varphi <_q) \rightarrow (c \varphi (a \varphi <_q) \rightarrow (e \varphi (zw_q^q_{[x,q]}))) \rightarrow \]

\[(d \varphi (a \varphi q)) \rightarrow (x \varphi (c \varphi \leq_q) \rightarrow c \varphi (zw_q^q_{[x,q]}))) \]

(α)

(188) :: 279 \[\vdash a \varphi \neg (x \varphi (d \varphi \leq q)) \rightarrow (c \varphi (a \varphi <_q) \rightarrow (e \varphi (zw_q^q_{[x,q]}))) \rightarrow \]

\[(d \varphi (a \varphi q)) \rightarrow (x \varphi (c \varphi \leq_q) \rightarrow c \varphi (zw_q^q_{[x,q]}))) \]
\[\vdash x \vDash (d \vDash \leq q) \rightarrow (c \vDash (a \vDash < q) \rightarrow (e \vDash (zw^q_{(x,a)})) \rightarrow \]
\[(d \vDash (a \vDash q) \rightarrow (x \vDash (c \vDash (\leq_q)^v)) \rightarrow c \vDash (zw^q_{(x,d)})))) (\beta)\]
\[\times\]
\[\vdash x \vDash (d \vDash \leq q) \rightarrow (c \vDash (a \vDash < q) \rightarrow (e \vDash (zw^q_{(x,a)})) \rightarrow \]
\[(d \vDash (a \vDash q) \rightarrow (\neg c \vDash (zw^q_{(x,d)})) \rightarrow (x \vDash (c \vDash (\leq_q)^v)))) (\gamma)\]

\(IIa:: \quad \vdash x \vDash (d \vDash \leq q) \rightarrow (c \vDash (a \vDash < q) \rightarrow (e \vDash (zw^q_{(x,a)})) \rightarrow\]
\[(d \vDash (a \vDash q) \rightarrow (\forall e [e \vDash v \rightarrow \neg e \vDash (zw^q_{(x,d)})) \rightarrow \]
\[(c \vDash v \rightarrow \neg x \vDash (c \vDash (\leq_q)^v)))))))) (\delta)\]

\(192:: \quad \vdash x \vDash (d \vDash \leq q) \rightarrow (c \vDash (zw^q_{(x,a)})) \rightarrow (d \vDash (a \vDash q)) \rightarrow\]
\[(\forall e [e \vDash v \rightarrow \neg e \vDash (zw^q_{(x,d)}))] \rightarrow \]
\[(c \vDash (a \vDash < q) \rightarrow \neg x \vDash (c \vDash (\leq_q)^v)))))))) (\varepsilon)\]

\[\neg\]
\[\vdash x \vDash (d \vDash \leq q) \rightarrow (e \vDash (zw^q_{(x,a)})) \rightarrow\]
\[(\forall e [e \vDash v \rightarrow \neg e \vDash (zw^q_{(x,d)}))] \rightarrow\]
\[\forall e [e \vDash (a \vDash < q) \rightarrow \neg x \vDash (e \vDash (\leq_q)^v)])})) (\zeta)\]

\(351:: \quad \vdash a \vDash v \rightarrow (x \vDash (d \vDash \leq q) \rightarrow (e \vDash (zw^q_{(x,a)})) \rightarrow\]
\[(d \vDash (a \vDash q) \rightarrow (\forall e [e \vDash v \rightarrow \neg e \vDash (zw^q_{(x,d)}))] \rightarrow \]
\[x \vDash (a \vDash (v \vDash q)))))))) (\eta)\]

\(349:: \quad \vdash \)
\[\vdash e \circ \nu \rightarrow (x \circ (d \circ \leq_q \rightarrow (e \circ (zw^q_{(x,a)})) \rightarrow \\
(d \circ (a \circ q) \rightarrow (\forall e \circ \nu \rightarrow \neg e \circ (zw^q_{(x,d)})) \rightarrow \\
x \circ (a \circ (v \circ q)))))) \]

\[\times \]

\[\vdash \neg x \circ (a \circ (v \circ q)) \rightarrow (x \circ (d \circ \leq_q \rightarrow \\
(\forall e \circ \nu \rightarrow \neg e \circ (zw^q_{(x,d)})) \rightarrow \\
(d \circ (a \circ q) \rightarrow (e \circ \nu \rightarrow \neg e \circ (zw^q_{(x,a)})))))) \]

\((I1a) :: -- -- -- -- -- -- -- \)

\[\vdash \forall a \neg x \circ (a \circ (v \circ q)) \rightarrow \]

\[(x \circ (d \circ \leq_q \rightarrow (\forall e \circ e \nu \rightarrow \neg e \circ (zw^q_{(x,d)})) \rightarrow \\
(d \circ (a \circ q) \rightarrow (e \circ \nu \rightarrow \neg e \circ (zw^q_{(x,a)})))))) \]

\((\kappa \) und \(\lambda \) \)

\[\vdash \forall a \neg x \circ (a \circ (v \circ q)) \rightarrow \]

\[(\forall e \circ (e \circ \nu \rightarrow \neg e \circ (zw^q_{(x,a)}))) \]

\[(152) :: -- -- -- -- -- -- -- -- \]

\[\vdash x \circ (y \circ \leq_q \rightarrow (\forall a \neg x \circ (a \circ (v \circ q))) \rightarrow \\
(\forall e \circ (e \circ \nu \rightarrow \neg e \circ (zw^q_{(x,a)}))) \rightarrow \\
(\forall e \circ (e \circ \nu \rightarrow \neg e \circ (zw^q_{(x,y)})))) \]

\[(353) \]

§ 5. Zerlegung.

\[\rightarrow \] Wir haben das Vorderglied\[3 \]

\[\rightarrow \] wegzuschaffen, indem wir zeigen, dass \(x \) selbst unter den \(v \)-Begriff fiel, wenn es ein Glied der von \(x \) bis \(x \) laufenden \(q \)-Reihe gäbe, das unter den \(v \)-Begriff fiel. Dann wäre \(x \) das Glied

\[3 \] Wir haben das Unterglied

\[3 \] Textkorrektur infolge modernisierter Formelnotation!
der mit \(x \) anfangenden \(q \)-Reihe, das zuerst unter den \(v \)-Begriff fiel. Wir beweisen mit (282) den Satz
\[\vdash e \circ zw_q^{(x,x)} \to (e \circ v \to x \circ v) \]
Wir haben dann, um (350) anwenden zu können, noch den Satz
\[\vdash e \circ zw_q^{(x,x)} \to (r \circ (x \circ v < q) \to \neg x \circ (r \circ (\leq q))) \]
abzuleiten.

§ 6. Aufbau.

188 \[\vdash x \circ (r \circ (\leq q)) \to x \circ (r \circ \leq q) \]
(280) \[\vdash r \circ (x \circ v < q) \to (x \circ (r \circ (\leq q)) \to x \circ (x \circ v < q)) \]
\(\times \)
(271) \[\vdash e \circ (zw_q^{(x,x)}) \to (r \circ (x \circ v < q) \to \neg x \circ (r \circ (\leq q))) \]
(\(\gamma \)) \[\vdash e \circ (zw_q^{(x,x)}) \to \forall v [r \circ (x \circ v < q) \to x \circ (r \circ (\leq q))] \]
(350) \[\vdash x \circ v \to (x \circ (x \circ v \leq q) \to (e \circ (zw_q^{(x,x)} \to x \circ (x \circ (v \circ q)))) \]
(\(\varepsilon \)) \[\vdash x \circ v \to (e \circ (zw_q^{(x,x)}) \to x \circ (x \circ (v \circ q))) \]
(\(\zeta \)) \[\vdash e \circ (zw_q^{(x,x)}) \to e = x \]
(IIIc) \[\vdash e \circ (zw_q^{(x,x)}) \to (e \circ v \to x \circ v) \]
(\(\eta \)) \[\vdash e \circ v \to (e \circ (zw_q^{(x,x)} \to x \circ (x \circ (v \circ q)))) \]
(\(\zeta \)) \[\vdash e \circ v \to (e \circ (zw_q^{(x,x)} \to x \circ (x \circ (v \circ q)))) \]
(\(\theta \)) \[\times \]
\[\vdash \neg x \circ (x \circ (v \circ q)) \rightarrow (e \circ v \rightarrow \neg e \circ (zw^q_{(x,x)})) \quad (\iota) \]

(IIa) ::

\[\vdash \forall a \left[\neg x \circ (a \circ (v \circ q)) \right] \rightarrow (e \circ v \rightarrow \neg e \circ (zw^q_{(x,x)})) \quad (\kappa) \]

\[\vdash \forall a \left[\neg x \circ (a \circ (v \circ q)) \right] \rightarrow \forall e \left[e \circ v \rightarrow \neg e \circ (zw^q_{(x,x)}) \right] \quad (\lambda) \]

(353) :

\[\vdash x \circ (y \circ \leq_q) \rightarrow (\forall a \left[\neg x \circ (a \circ (v \circ q)) \right] \rightarrow \forall e \left[e \circ v \rightarrow \neg e \circ (zw^q_{(x,y)}) \right]) \quad (354) \]

\[\times \]

\[\vdash \forall e \left[e \circ v \rightarrow \neg e \circ (zw^q_{(x,y)}) \right] \rightarrow \neg x \circ (y \circ \leq_q) \quad (355) \]

\[\text{funk}(q) \rightarrow (\neg y \circ (y \circ <_q) \rightarrow (x \circ (y \circ \leq_q) \rightarrow y \circ (zw^q_{(x,y)})) \quad (344) \]

\[\times \]

\[\vdash \text{funk}(q) \rightarrow (\neg y \circ (y \circ <_q) \rightarrow (\neg y \circ (zw^q_{(x,y)}) \rightarrow \neg x \circ (y \circ \leq_q))) \quad (345) \]

(IIa) ::

\[\vdash \text{funk}(q) \rightarrow (\neg y \circ (y \circ <_q) \rightarrow (\forall e \circ v \rightarrow \neg e \circ (zw^q_{(x,y)})) \rightarrow (y \circ v \rightarrow \neg x \circ (y \circ \leq q))) \quad (\alpha) \]

(355) :

\[\text{funk}(q) \rightarrow (\neg y \circ (y \circ <_q) \rightarrow (\forall e \circ v \rightarrow \neg e \circ (zw^q_{(x,y)})) \rightarrow (y \circ v \rightarrow \neg x \circ (y \circ \leq q))) \quad (\beta) \]
\[\vdash \forall \alpha \neg x \varnothing (a \varnothing (v \varnothing q)) \rightarrow (\text{funk}(q) \rightarrow (\neg y \varnothing (y \varnothing <q) \rightarrow (y \varnothing v \rightarrow \neg x \varnothing (y \varnothing \leq q))) \]

(357)

(356) ::

\[\vdash \forall \alpha \neg x \varnothing (a \varnothing (v \varnothing q)) \rightarrow (\text{funk}(q) \rightarrow (\neg y \varnothing (y \varnothing <q) \rightarrow \neg x \varnothing (y \varnothing \leq q))) \]

(358)

\[(IIa) :: \]

\[\vdash \text{funk}(q) \rightarrow (\forall \alpha \neg x \varnothing (a \varnothing (v \varnothing q)) \rightarrow (\forall i \neg i \varnothing (i \varnothing <q) \rightarrow \neg x \varnothing (y \varnothing \leq q))) \]

(358a) ::

\[\vdash \text{funk}(q) \rightarrow (\forall \alpha \neg x \varnothing (a \varnothing (v \varnothing q)) \rightarrow (\forall i \neg i \varnothing (i \varnothing <q) \rightarrow \forall e \neg x \varnothing (e \varnothing \leq q))) \]

(359)

\[\text{S.7} \]

\section*{b) Beweis des Satzes}
\[, \vdash \forall i \neg i \varnothing (i \varnothing <q) \rightarrow (\text{funk}(q) \rightarrow (x \varnothing (m \varnothing (v \varnothing q)) \rightarrow (\alpha = \text{anz} (m \varnothing \leq \neg^{-1} \frac{1}{2} \leq (v \varnothing q))) \rightarrow \alpha = \text{anz} (x \varnothing (\leq q))) \]

§ 7. Zerlegung.

Wir knüpfen nun an § 1 wieder an, indem wir eine Beziehung definieren, mit der wir die unter den \(v\)-Begriff fallenden Glieder der mit \(x\) anfangenden \(q\)-Reihe ordnen können wie dort angegeben war:

\[v \varnothing q := \text{ext} \alpha \text{ext} \varepsilon (\neg (e \varnothing (\alpha \varnothing (\neg q))) \rightarrow e \varnothing (\alpha \varnothing (\neg q))) \]

\[(T) \]

Wir deuten mit \(m\) das Glied an, das zuerst in der mit \(x\) anfangenden \(q\)-Reihe unter den \(v\)-Begriff fällt, und haben die beiden Sätze

\[, \vdash x \varnothing (m \varnothing (v \varnothing q)) \rightarrow (m \varnothing (e \varnothing \leq (v \varnothing q)) \rightarrow x \varnothing (e \varnothing (\leq q))) \]

(\(\alpha\))

\[, \vdash \forall i \neg i \varnothing (i \varnothing <q) \rightarrow (\text{funk}(q) \rightarrow (x \varnothing (m \varnothing (v \varnothing q)) \rightarrow (x \varnothing (e \varnothing (\leq q))) \rightarrow m \varnothing (e \varnothing \leq (v \varnothing q))) \]

(\(\beta\))

zu beweisen, aus denen sich ergeben, dass die \((v \varnothing q)\)-Beziehung in der That die von ihr verlangte Ordnung leistet, dass also Endlos die Anzahl der Glieder der mit \(x\) anfangenden \(q\)-Reihe ist, die unter den \(v\)-Begriff fallen, wenn Endlos die Anzahl der Glieder der mit \(m\) anfangenden \((v \varnothing q)\)-Reihe ist, falls \(m\) in der mit \(x\) anfangenden \(q\)-Reihe zuerst unter den \(v\)-Begriff fällt und die \(q\)-Beziehung eindeutig ist und kein Gegenstand in der \(q\)-Reihe auf sich selbst folgt. Dies ist der in unserer Überschrift aufgeführte Satz. Wir beweisen (\(\alpha\)) mit (144).
§ 8. Aufbau.

T ⊢ ext α ext ε (¬ (ε v (α v (≤ₕ)))) → ε v (α v (≤ₕ))) = v ∃ q

(14) :

T ⊢ (d v (a v (≤ₕ))) → d v (a v (≤ₕ)) →
¬ d v (a v (v ∃ q))

(1a) ::

¬ d v (a v (≤ₕ)) → ¬ d v (a v (v ∃ q))

×

T ⊢ d v (a v (v ∃ q)) → d v (a v (≤ₕ))

(188) :

T ⊢ d v (a v (v ∃ q)) → d v (a v (≤ₕ))

(280) :

S.8

T ⊢ d v (a v (v ∃ q)) → (d v (d v (≤ₕ)) → x v (a v (≤ₕ)))

(α)

(136) :

T ⊢ d v (a v (v ∃ q)) → (d v (d v (≤ₕ)) → x v (a v (≤ₕ)))

(363)

(197) :

T ⊢ a v v → (d v (a v (v ∃ q)) → (x v (d v (≤ₕ)) →

x v (a v (≤ₕ))))

(α)

(188) :

T ⊢ a v v → (d v (a v (v ∃ q)) → (x v (d v (≤ₕ)) →

x v (a v (≤ₕ))))

(364)

361 ⊢ d v (a v (v ∃ q)) → d v (a v (≤ₕ))

(191) :

T ⊢ d v (a v (v ∃ q)) → a v v

(365)

(364) :
\[\vdash x \circ (d \circ (\leq_q)) \rightarrow \]
\[(d \circ (a \circ (v \circ q)) \rightarrow x \circ (a \circ (\leq_q))) \] \hspace{1cm} (\alpha)

\[\vdash \forall \theta [x \circ (\theta \circ (\leq_q)) \rightarrow \]
\[\forall a [\theta \circ (a \circ (v \circ q)) \rightarrow x \circ (a \circ (\leq_q))]] \] \hspace{1cm} (\beta)

(144) :
\[\vdash x \circ (m \circ (\leq_q)) \rightarrow \]
\[(m \circ (c \circ \leq (v \circ q)) \rightarrow x \circ (c \circ (\leq_q))) \] \hspace{1cm} (366)

\[\Sigma \vdash \text{ext } x \in (\neg (x \circ (\alpha \circ (\leq_q)) \rightarrow \epsilon \circ (\alpha \circ (\leq_q)))) = \]
\[v \circ q \] \hspace{1cm} (6)

\[\vdash x \circ (m \circ (v \circ q)) \rightarrow \]
\[\sim (x \circ (m \circ (\leq_q))) \rightarrow x \circ (m \circ (\leq_q))) \] \hspace{1cm} (367)

(Id) :
\[\vdash x \circ (m \circ (v \circ q)) \rightarrow x \circ (m \circ (\leq_q)) \] \hspace{1cm} (368)

(366) :
\[\vdash x \circ (m \circ (v \circ q)) \rightarrow (m \circ (c \circ \leq (v \circ q)) \rightarrow x \circ (c \circ (\leq_q))) \] \hspace{1cm} (369)

Um den Satz (\beta) des § 7 zu beweisen, leiten wir zuerst den Satz:

\[\vdash m \circ (c \circ \leq_q) \rightarrow (m \circ v \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \}
\[\forall n [m \circ (c \circ \leq_q) \rightarrow \]
\[\forall e [e \circ v \rightarrow (c \circ (x w (v \circ q) \rightarrow e \circ (x w (v \circ q))))])]) \] \hspace{1cm} (\alpha)

ab; d. h. wir zeigen, dass es unter gewissen Bedingungen ein Glied der \[m \circ (c \circ \leq_q) \rightarrow \] mit \[c \circ \leq_q \] endende \[q \circ v \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] Reihe gibt, von dem gilt, dass jedes Glied der von \[m \circ v \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] bis \[c \circ \leq_q \] laufenden \[q \circ v \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] die unter den \[v \circ q \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] Begriff fällt, der von \[m \circ v \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] bis zu diesem Gliede laufenden \[v \circ q \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] Reihe gehört. Aus diesem Satze schließen wir dann, dass \[c \circ \leq_q \] endende \[q \circ v \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] Reihe, das unter den \[v \circ \leq_q \] Begriff fällt und der mit \[m \circ \leq_q \] anfangenden \[q \circ v \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] Reihe angehört, ist von \[m \circ \leq_q \] bis zu diesem Gliede laufenden \[v \circ q \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] Reihe angehört. Die Bedingung, dass \[c \circ \leq_q \] endende \[q \circ v \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] Reihe, kann ersetzten durch \[m \circ \leq_q \] endende \[q \circ v \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] die, dass es der mit \[m \circ \leq_q \] anfangenden \[q \circ v \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] Reihe angehört, wenn \[m \circ \leq_q \] endende \[q \circ v \rightarrow \{\text{funk} (q) \rightarrow (\neg c \circ (c \circ \leq_q) \rightarrow \] Reihe ist, das unter den \[v \circ \leq_q \] Begriff fällt. Den Satz (\alpha) beweisen wir nun mit
und bedürfen dazu des Satzes

\[\vdash m \vee v \rightarrow (\text{funk}(q) \rightarrow (\neg a \vee (a \leq q) \rightarrow \\
(\forall n [n \leq q] \rightarrow \\
\neg \forall e [e \vee v \rightarrow (e \vee (zw^{q}(m,a)) \rightarrow e \vee (zw^{q}(m,n)))] \\
(m \vee (d \leq q) \rightarrow (d \vee (a \leq q) \rightarrow \\
(\forall n [n \leq q] \rightarrow \\
\neg \forall e [e \vee v \rightarrow (e \vee (zw^{q}(m,d)) \rightarrow e \vee (zw^{q}(m,n)))]))) \rightarrow
\]

\[\vdash \exists \alpha (\exists \text{zw}(q,m,a) \rightarrow \exists \text{zw}(q,m,n)) \\
\vdash \exists \beta (\exists \text{zw}(q,m,d) \rightarrow \exists \text{zw}(q,m,n)) \\
\vdash \exists \gamma (\exists \text{zw}(q,m,a) \rightarrow \exists \text{zw}(q,m,n))
\]

Um diesen abzuleiten, unterscheiden wir die Fälle, dass \(a \) unter den \(v \)-Begriff fällt und den entgegengesetzten. In diesem haben wir den Satz

\[\vdash \exists \alpha (\exists \text{zw}(q,m,a) \rightarrow \exists \text{zw}(q,m,n)) \rightarrow \\
(\exists \beta (\exists \text{zw}(q,m,d) \rightarrow \exists \text{zw}(q,m,n)) \rightarrow \\
(\exists \gamma (\exists \text{zw}(q,m,a) \rightarrow \exists \text{zw}(q,m,n)))) \rightarrow
\]

worin \(p' \) statt \(v \circ q' \) geschrieben ist. Dieser folgt leicht aus (280b).

§ 10. **Aufbau.**

IIIb \[\vdash \neg a \vee v \rightarrow (e \vee v \rightarrow \neg \alpha = \varepsilon) \]

(280b) :

\[\vdash m \vee (d \leq q) \rightarrow (\neg a \vee v \rightarrow (d \vee (a \leq q) \rightarrow \\
(e \vee (zw^{q}(m,a)) \rightarrow e \vee (zw^{q}(m,n)))) \]

\[(IIa) : \neg a \vee v \rightarrow (e \vee (zw^{q}(m,a)) \rightarrow e \vee (zw^{q}(m,n))) \rightarrow \\
(\exists \beta (\exists \text{zw}(q,m,d) \rightarrow \exists \text{zw}(q,m,n)) \rightarrow \\
(\exists \gamma (\exists \text{zw}(q,m,a) \rightarrow \exists \text{zw}(q,m,n)))) \rightarrow
\]

S.10

\[\vdash \exists \alpha (\exists \text{zw}(q,m,a) \rightarrow \exists \text{zw}(q,m,n)) \rightarrow \\
(\exists \beta (\exists \text{zw}(q,m,d) \rightarrow \exists \text{zw}(q,m,n)) \rightarrow \\
(\exists \gamma (\exists \text{zw}(q,m,a) \rightarrow \exists \text{zw}(q,m,n)))) \rightarrow
\]

\[\exists
\]

\[\times
\]
Indem wir den Fall, dass B-Begriff fällt, und beweisen den Satz

Zum Beweise des Satzes (β) des § 9 fassen wir nun den Fall ins Auge, dass a unter den v-Begriff fällt, und beweisen den Satz

$\vdash \forall v [e \sigma v \rightarrow (e \sigma (zw_{m,n}^q) \rightarrow e \sigma (zw_{m,n}^p))]$

$(m \sigma (d \sigma \leq q) \rightarrow (\neg a \sigma v \rightarrow (d \sigma (a \sigma q) \rightarrow

\neg \forall e [e \sigma v \rightarrow (e \sigma (zw_{m,d}^q) \rightarrow e \sigma (zw_{m,n}^p))])])

(\delta)

(IIa) ::

\[\forall n [n \sigma (a \sigma \leq q) \rightarrow
\neg \forall e [e \sigma v \rightarrow (e \sigma (zw_{m,n}^q) \rightarrow e \sigma (zw_{m,n}^p))]] \rightarrow

(m \sigma (d \sigma \leq q) \rightarrow (\neg a \sigma v \rightarrow (d \sigma (a \sigma q) \rightarrow

\neg \forall e [e \sigma v \rightarrow (e \sigma (zw_{m,d}^q) \rightarrow e \sigma (zw_{m,n}^p))])])

(\varepsilon)

(137) ::

\[\forall n [n \sigma (a \sigma \leq q) \rightarrow
\neg \forall e [e \sigma v \rightarrow (e \sigma (zw_{m,n}^q) \rightarrow e \sigma (zw_{m,n}^p))]] \rightarrow

(m \sigma (d \sigma \leq q) \rightarrow (\neg a \sigma v \rightarrow (d \sigma (a \sigma q) \rightarrow (n \sigma (d \sigma \leq q) \rightarrow

\neg \forall e [e \sigma v \rightarrow (e \sigma (zw_{m,d}^q) \rightarrow e \sigma (zw_{m,n}^p))])])

(370)

§ 11. Zerlegung.

Zum Beweise des Satzes (β) des § 9 fassen wir nun den Fall ins Auge, dass a unter den v-Begriff fällt, und beweisen den Satz

$\vdash \forall n [n \sigma (a \sigma \leq q) \rightarrow
\neg \forall e [e \sigma v \rightarrow (e \sigma (zw_{m,n}^q) \rightarrow e \sigma (zw_{m,n}^p))]] \rightarrow

(a \sigma v \rightarrow (n \sigma (d \sigma \leq q) \rightarrow (m \sigma v \rightarrow

(m \sigma (d \sigma \leq q) \rightarrow (\neg a \sigma (a \sigma \leq q) \rightarrow (funk (q) \rightarrow (d \sigma (a \sigma q) \rightarrow

\neg \forall e [e \sigma v \rightarrow (e \sigma (zw_{m,d}^q) \rightarrow e \sigma (zw_{m,n}^p))])])])])

(\alpha)

Indem wir den Fall, dass a zu a in der $(v \delta q)$-Beziehung steht, von dem entgegengesetzten unterscheiden, beweisen wir die beiden Sätze

$\vdash m \sigma v \rightarrow (m \sigma (a \sigma q) \rightarrow (\neg a \sigma (a \sigma \leq q) \rightarrow

(\forall n [n \sigma (a \sigma \leq q) \rightarrow
\neg \forall e [e \sigma v \rightarrow (e \sigma (zw_{m,n}^q) \rightarrow e \sigma (zw_{m,n}^p))]] \rightarrow

(m \sigma (d \sigma \leq q) \rightarrow (d \sigma (a \sigma q) \rightarrow

\neg \forall e [e \sigma v \rightarrow (e \sigma (zw_{m,d}^q) \rightarrow e \sigma (zw_{m,n}^p))])])

(\beta)$
wo ,p' die Stelle von , (v 3 q)' vertritt, und |

\[\text{\[342\]} \vdash \text{funk}(q) \to (\neg \, \text{m} \, \text{zw}_{(m,d)}^q \to (\neg \, \text{d} \, \text{zw}_{(m,d)} \leq_q) \to \neg \, \text{m} \, (d \, \text{zw}_{(m,d)} \leq_q))\]

\[\times\]

\[\vdash \text{funk}(q) \to (\neg \, \text{m} \, (d \, \text{zw}_{(m,d)} \leq_q) \to (\neg \, \text{d} \, \text{zw}_{(m,d)} \leq_q) \to \neg \, \text{m} \, \text{zw}_{(m,d)}^q)\] \hspace{1cm} (371)

(279) \hspace{1cm} \vdash m \, (d \, \text{zw}_{(m,d)} \leq_q) \to (\neg \, \text{a} \, (a \, \text{zw}_{(m,a)} \leq_q) \to \text{funk}(q) \to (d \, \text{zw}_{(m,a)}^q)\]

(271, 265) \hspace{1cm} \vdash m \, (d \, \text{zw}_{(m,d)} \leq_q) \to (\neg \, \text{a} \, (a \, \text{zw}_{(m,a)} \leq_q) \to (d \, \text{zw}_{(m,a)}^q)\]

\[\times\]

\[\vdash m \, (d \, \text{zw}_{(m,a)}^q) \to m \, (d \, \text{zw}_{(m,d)}^q)\] \hspace{1cm} (372)

\[\vdash m \, (d \, \text{zw}_{(m,a)}^q) \to m \, (d \, \text{zw}_{(m,d)}^q)\] \hspace{1cm} (373)

Zum Beweise von (\beta) unterscheiden wir wieder den Fall, dass e mit a zusammenfällt vom entgegengesetzten. Wir haben mithin die Sätze

\[\vdash a \Rightarrow (\neg \, \text{a} \, (a \, \text{zw}_{(m,d)} \leq_q) \to (\neg \, \text{d} \, (a \, \text{zw}_{(m,d)}) \to (\neg \, \text{a} \, (a \, \text{zw}_{(m,d)} \leq_q) \to (\neg \, \text{d} \, (a \, \text{zw}_{(m,d)})))\] \hspace{1cm} (\gamma)

zu beweisen. Jener ist auf (344) zurückzuführen, und wir müssen zu dem Zwecke zeigen, dass unter unserem Voraussetzungen a der mit m anfangenden p-Reihe angehört. Wir zeigen dazu, dass m der von m bis n laufenden p-Reihe gehört, woraus folgt, dass n der mit m anfangenden p-Reihe gehört (269)

§ 12. Aufbau.
\[\vdash m \circ (zw^p_{(m,n)}) \rightarrow m \circ (n \circ \leq_p) \]

\[(137) : \]

\[\vdash m \circ (zw^p_{(m,n)}) \rightarrow (n \circ (a \circ p) \rightarrow m \circ (a \circ \leq_p)) \]

\[(344) : \]

\[\vdash \text{funk}(p) \rightarrow (\neg a \circ (a \circ \prec_p) \rightarrow (m \circ (zw^p_{(m,n)}) \rightarrow (n \circ (a \circ p) \rightarrow a \circ (zw^p_{(m,a)})))) \]

\[(265) :: \]

\[\vdash \neg a \circ (a \circ \prec_p) \rightarrow (m \circ (zw^p_{(m,n)}) \rightarrow (n \circ (a \circ p) \rightarrow a \circ (zw^p_{(m,a)})))) \]

\[(IIa) :: \]

\[\vdash \neg a \circ (a \circ \prec_q) \rightarrow \]

\[(\forall e \in [e \circ v \rightarrow (e \circ (zw^q_{(m,d)}) \rightarrow e \circ (zw^p_{(m,n)}))] \rightarrow \]

\[(m \circ e \rightarrow (m \circ (zw^q_{(m,d)}) \rightarrow \]

\[(n \circ (a \circ p) \rightarrow a \circ (zw^p_{(m,a)})))) \]

\[(373) :: \]

\[\vdash \neg a \circ (a \circ \prec_p) \rightarrow \]

\[(\forall e \in [e \circ v \rightarrow (e \circ (zw^q_{(m,d)}) \rightarrow e \circ (zw^p_{(m,n)}))] \rightarrow \]

\[(m \circ e \rightarrow (m \circ (d \circ \leq_q) \rightarrow (e \circ (zw^q_{(m,n)})) \rightarrow \]

\[(d \circ (a \circ q) \rightarrow (n \circ (a \circ p) \rightarrow a \circ (zw^p_{(m,a)})))))))) \]

\[(374) \]

\[(IIIc) : \]

\[\vdash a = e \rightarrow (\neg a \circ (a \circ \prec_p) \rightarrow \]

\[(\forall e \in [e \circ v \rightarrow (e \circ (zw^q_{(m,d)}) \rightarrow e \circ (zw^p_{(m,n)}))] \rightarrow \]

\[(m \circ e \rightarrow (m \circ (d \circ \leq_q) \rightarrow (e \circ (zw^q_{(m,n)})) \rightarrow \]

\[(d \circ (a \circ q) \rightarrow (n \circ (a \circ p) \rightarrow e \circ (zw^p_{(m,a)}))))))) \]

Wir beweisen nun den Satz (e) des § 11. Dazu dient uns der Satz (280b) und der Satz

\[\vdash \neg n \circ (a \circ p) \rightarrow (\neg a \circ (a \circ \prec_p) \rightarrow (e \circ (zw^p_{(m,n)}) \rightarrow e \circ (zw^p_{(m,a)})))) \rightarrow \]

\[(\neg n \circ (a \circ \leq_p) \rightarrow (e \circ (zw^p_{(m,n)}) \rightarrow e \circ (zw^p_{(m,a)})))) \]

\[(\alpha) \]

der leicht mit (137) abzuleiten ist.

\[137 \vdash e \circ (n \circ \leq_p) \rightarrow (n \circ (a \circ p) \rightarrow e \circ (a \circ \leq_p)) \]

\[(269) :: \]

\[\vdash e \circ (n \circ \leq_p) \rightarrow (n \circ (a \circ p) \rightarrow e \circ (a \circ \leq_p)) \]
\[\vdash e \varnothing (zw^P_{(m,n)}) \rightarrow (n \varnothing (a \varnothing p) \rightarrow e \varnothing (n \varnothing \leq p)) \]
(\alpha)

(274) :
\[\vdash \text{funk}(p) \rightarrow (e \varnothing (zw^P_{(m,n)}) \rightarrow (n \varnothing (a \varnothing p) \rightarrow (\neg a \varnothing (a \varnothing < p)) \rightarrow (m \varnothing (e \varnothing \leq p) \rightarrow e \varnothing (zw^P_{(m,a)})))) \]
(\beta)

(270, 265) ::
\[\vdash n \varnothing (a \varnothing p) \rightarrow (\neg a \varnothing (a \varnothing < p)) \rightarrow (e \varnothing (zw^P_{(m,n)}) \rightarrow e \varnothing (zw^P_{(m,a)})) \]
(375)

(IIa) ::
\[\vdash n \varnothing (a \varnothing p) \rightarrow (\neg a \varnothing (a \varnothing < p)) \rightarrow (\forall e [e \varnothing v \rightarrow (e \varnothing (zw^q_{(m,d)}) \rightarrow e \varnothing (zw^P_{(m,n)}))] \rightarrow (e \varnothing v \rightarrow (e \varnothing (zw^q_{(m,d)}) \rightarrow e \varnothing (zw^P_{(m,a)})))) \]
(\alpha)

(280b) ::
\[\vdash \text{S.13} \]
\[\vdash n \varnothing (a \varnothing p) \rightarrow (\neg a \varnothing (a \varnothing < p)) \rightarrow (\forall e [e \varnothing v \rightarrow (e \varnothing (zw^q_{(m,d)}) \rightarrow e \varnothing (zw^P_{(m,n)}))] \rightarrow (e \varnothing v \rightarrow (m \varnothing (d \varnothing \leq q) \rightarrow (\neg a = e \rightarrow (d \varnothing (a \varnothing q) \rightarrow (e \varnothing (zw^q_{(m,a)}) \rightarrow e \varnothing (zw^P_{(m,a)})))))\)
(\beta)

(374) :
\[\vdash m \varnothing v \rightarrow (n \varnothing (a \varnothing p) \rightarrow (\neg a \varnothing (a \varnothing < p)) \rightarrow (\forall e [e \varnothing v \rightarrow (e \varnothing (zw^q_{(m,d)}) \rightarrow e \varnothing (zw^P_{(m,n)}))] \rightarrow (m \varnothing (d \varnothing \leq q) \rightarrow (d \varnothing (a \varnothing q) \rightarrow (e \varnothing v \rightarrow (e \varnothing (zw^q_{(m,a)}) \rightarrow e \varnothing (zw^P_{(m,a)}))))))) \]
(\gamma)
⊢ m v → (n a p) → (¬ a (a < p)) →

(∀ e [e v → (e zw p (m,a)) → e zw P (m,a)]) →

(m d ≤ q) → (d (a q) →

∀ e [e v → (e zw q (m,a)) → e zw P (m,a)])

(δ)

×

⊢ m v → (n a p) → (¬ a (a < p)) →

(¬ ∀ e [e v → (e zw q (m,a)) → e zw P (m,a)]) →

(m d ≤ q) → (d (a q) →

¬ ∀ e [e v → (e zw q (m,a)) → e zw P (m,a)])

(ε)

(IIa) ::

⊢ m v → (n a p) → (¬ a (a < p)) →

(∀ n [n d ≤ q) →

¬ ∀ e [e v → (e zw q (m,a)) → e zw P (m,a)]) →

(a (a ≤ q) → (m d ≤ q) → (d (a q) →

¬ ∀ e [e v → (e zw q (m,a)) → e zw P (m,a)])

(ζ)

(140) ::

⊢ m v → (n a p) → (¬ a (a < p)) →

(∀ n [n d ≤ q) →

¬ ∀ e [e v → (e zw q (m,a)) → e zw P (m,a)]) →

(m d ≤ q) → (d (a q) →

¬ ∀ e [e v → (e zw q (m,a)) → e zw P (m,a)])

(376)

§ 15a. Zerlegung.
Es ist jetzt der Satz (γ) des § 11 zu beweisen. Dazu brauchen wir den Satz

$$\vdash n \varphi (a \varphi (v \varphi (q))) \rightarrow (n \varphi (a \varphi (v \varphi (q)))) \quad (\alpha)$$

der leicht aus (T) abzuleiten ist. — Es bleibt hier das Vorderglied —

$$\vdash n \varphi (a \varphi (v \varphi (q))) \quad (\beta)$$

wegzuschaffen. Man muss also zeigen, dass es kein Glied geben kann, das auf n in der q-Reihe folgt und dem angehören:

$$\vdash r \varphi (a \varphi (v \varphi (q))) \rightarrow (n \varphi (r \varphi (v \varphi (q)))) \quad (\gamma)$$

Da nun nach der Annahme n dem r in der q-Reihe vorhergeht und unter den v-Begriff fällt, wäre r ein solches Glied, so müsste es unter unseren Voraussetzungen der von m bis d laufenden q-Reihe angehören:

$$\vdash r \varphi (a \varphi (v \varphi (q))) \rightarrow (n \varphi (r \varphi (v \varphi (q)))) \quad (\delta)$$

ab.

§ 16a. Aufbau.

136 $$\vdash n \varphi (a \varphi (v \varphi (q))) \rightarrow n \varphi (a \varphi (v \varphi (q)))$$

(275) $$\vdash r \varphi (a \varphi (v \varphi (q))) \rightarrow (n \varphi (r \varphi (v \varphi (q)))) \quad (377)$$

(296) $$\vdash r \varphi (a \varphi (v \varphi (q))) \rightarrow (n \varphi (r \varphi (v \varphi (q)))) \rightarrow (n \varphi (n \varphi (v \varphi (q)))) \rightarrow (a \varphi (a \varphi (v \varphi (q)))) \quad (378)$$

363 $$\vdash r \varphi (d \varphi (v \varphi (q))) \rightarrow (d \varphi (a \varphi (v \varphi (q)))) \rightarrow r \varphi (a \varphi (v \varphi (q)))$$

$$\vdash \forall \alpha [r \varphi (d \varphi (v \varphi (q))) \rightarrow \forall \alpha [d \varphi (a \varphi (v \varphi (q))) \rightarrow r \varphi (a \varphi (v \varphi (q)))] \quad (\alpha)$$

(144) $$\vdash r \varphi (n \varphi (v \varphi (q))) \rightarrow (r \varphi (n \varphi (v \varphi (q)))) \rightarrow (r \varphi (n \varphi (v \varphi (q)))) \quad (\beta)$$

(140) $\vdash n \varphi (a \varphi (v \varphi (q))) \rightarrow (n \varphi (n \varphi (v \varphi (q)))) \rightarrow (n \varphi (n \varphi (v \varphi (q))))$

4Es bleibt hier das Unterglied

2Textkorrektur infolge modernisierter Formelnotation!
\[\vdash r \circ n \leq_{(v, q)} \rightarrow r \circ (n \leq q) \quad (379) \]

(269) \[\vdash r \circ (zw_{(m,n)}^{(v,q)}) \rightarrow r \circ (n \leq q) \quad (380) \]

(270) \[\vdash r \circ (zw_{(m,n)}^{(v,q)}) \rightarrow r \circ (n \leq q) \quad \]

S.15

\[\vdash r \circ (zw_{(m,n)}^{(v,q)}) \rightarrow (n \leq (r < q) \rightarrow n \leq (n < q)) \quad (378) \]

\[\vdash r \circ (a < q) \rightarrow (funk(q) \rightarrow (r \circ (zw_{(m,n)}^{(v,q)})) \rightarrow (n \leq (r < q) \rightarrow a \circ (a < q))) \quad (\beta) \]

(IIa) \[\vdash r \circ (a < q) \rightarrow (funk(q) \rightarrow (\forall e [\varepsilon \circ v \rightarrow (\varepsilon \circ (zw_{(m,d)}^{(q)}) \rightarrow (r \circ v \rightarrow (r \circ (zw_{(m,n)}^{(q)})) \rightarrow (n \leq (r < q) \rightarrow a \circ (a < q))))))) \quad (381) \]

\[\vdash n \circ (r < q) \rightarrow (m \circ (n \leq q) \rightarrow m \circ (r < q)) \quad (136) \]

(382) \[\vdash n \circ (r < q) \rightarrow (m \circ (n \leq q) \rightarrow m \circ (r \leq q)) \quad (380) \]

(IIa) \[\vdash n \circ (r < q) \rightarrow (m \circ (zw_{(m,n)}^{(v,q)}) \rightarrow m \circ (r \leq q)) \quad (\alpha) \]

\[\vdash n \circ (r < q) \rightarrow (\forall e [\varepsilon \circ v \rightarrow (\varepsilon \circ (zw_{(m,d)}^{(q)}) \rightarrow (m \circ v \rightarrow (m \circ (zw_{(m,n)}^{(q)})) \rightarrow (m \circ (r < q) \rightarrow m \circ (r \leq q)))))) \quad (\beta) \]

(372) \[\vdash n \circ (r < q) \rightarrow (\forall e [\varepsilon \circ v \rightarrow (\varepsilon \circ (zw_{(m,d)}^{(q)}) \rightarrow (m \circ (zw_{(m,n)}^{(q)})) \rightarrow (m \circ (r \leq q))))) \quad (381) \]
⊢ \(n \circ (r \circ <q) \rightarrow \)
(\(\forall e [e \circ v \rightarrow (e \circ (zw^q_{m,d}) \rightarrow e \circ (zw^{v \circ \Delta} q))] \rightarrow (m \circ v \rightarrow (m \circ (d \circ \leq_q) \rightarrow (\neg a \circ (a \circ <q)) \rightarrow (funk \ (q) \rightarrow (d \circ (a \circ q) \rightarrow m \circ (r \circ \leq_q))))))))

(\(\gamma \))

(352) : ⊢ r \circ (a \circ <q) \rightarrow (n \circ (r \circ <q)) \rightarrow
(\(\forall e [e \circ v \rightarrow (e \circ (zw^q_{m,d}) \rightarrow e \circ (zw^{v \circ \Delta} q))] \rightarrow (m \circ v \rightarrow (m \circ (d \circ \leq_q) \rightarrow (\neg a \circ (a \circ <q)) \rightarrow (funk \ (q) \rightarrow (d \circ (a \circ q) \rightarrow m \circ (r \circ \leq_q))))))))

(\(\delta \))

(381) : ⊢ r \circ v \rightarrow (r \circ (a \circ <q)) \rightarrow
(\(\forall e [e \circ v \rightarrow (e \circ (zw^q_{m,d}) \rightarrow e \circ (zw^{v \circ \Delta} q))] \rightarrow (m \circ v \rightarrow (m \circ (d \circ \leq_q) \rightarrow (\neg a \circ (a \circ <q)) \rightarrow (funk \ (q) \rightarrow (d \circ (a \circ q) \rightarrow (n \circ (r \circ \leq_q) \rightarrow a \circ (a \circ <q))))))))

(\(\epsilon \))

(188, 191) :: ⊢ (a \circ (a \circ <q)) \rightarrow
(\(\forall e [e \circ v \rightarrow (e \circ (zw^q_{m,d}) \rightarrow e \circ (zw^{v \circ \Delta} q))] \rightarrow (m \circ v \rightarrow (m \circ (d \circ \leq_q) \rightarrow (\neg a \circ (a \circ <q)) \rightarrow (funk \ (q) \rightarrow (d \circ (a \circ q) \rightarrow (n \circ (r \circ \leq_q) \rightarrow a \circ (a \circ <q))))))))

(\(\zeta \))

×

(\(\forall e [e \circ v \rightarrow (e \circ (zw^q_{m,d}) \rightarrow e \circ (zw^{v \circ \Delta} q))] \rightarrow (m \circ v \rightarrow (m \circ (d \circ \leq_q) \rightarrow (\neg a \circ (a \circ <q)) \rightarrow (funk \ (q) \rightarrow (d \circ (a \circ q) \rightarrow (r \circ (a \circ <q) \rightarrow (n \circ (r \circ \leq_q))))))))

(\(\eta \))

(\(\iota \))
\[\vdash \forall e \ [e \circ (zw_q^{(m,d)}) \rightarrow e \circ (zw_{(m,n)}^{(v \delta q)})] \rightarrow \]
\[(m \circ v \rightarrow (m \circ (d \circ \leq_q) \rightarrow (\neg \ a \circ (a \circ <_q) \rightarrow (\text{funk} (q) \rightarrow \]
\[(d \circ (a \circ q) \rightarrow \forall e \ [e \circ (a \circ <_q) \rightarrow (n \circ (e \circ (<_q}))]))]) \]

(383)

\[T \vdash \text{ext} \alpha \text{ext} \varepsilon (\neg (e \circ (a \circ (<_q))) \rightarrow e \circ (a \circ (<_q))) = v \delta q \]

(10) :

\[\vdash \neg (n \circ (a \circ (<_q))) \rightarrow n \circ (a \circ (<_q))) \rightarrow \]
\[n \circ (a \circ (v \delta q)) \] \hspace{1cm} (\alpha)

(If) ::

\[\vdash n \circ (a \circ (<_q)) \rightarrow (\neg n \circ (a \circ (<_q))) \rightarrow \]
\[n \circ (a \circ (v \delta q))) \] \hspace{1cm} (384)

(197) ::

\[\vdash a \circ v \rightarrow (n \circ (a \circ <_q) \rightarrow \]
\[(\neg n \circ (a \circ (<_q))) \rightarrow n \circ (a \circ (v \delta q))) \] \hspace{1cm} (\alpha)

(15) ::

\[\vdash a \circ v \rightarrow (n \circ (a \circ <_q) \rightarrow \]
\[(\forall e \ [(e \circ (a \circ <_q) \rightarrow (n \circ (e \circ (<_q))) \rightarrow n \circ (a \circ (v \delta q))))] \] \hspace{1cm} (385)

(134) ::

\[\vdash a \circ v \rightarrow (n \circ (d \circ \leq_q) \rightarrow (d \circ (a \circ q) \rightarrow \]
\[(\forall e \ [(a \circ (a \circ <_q) \rightarrow (n \circ (e \circ (<_q))) \rightarrow n \circ (a \circ (v \delta q))))] \] \hspace{1cm} (\alpha)

(383) ::

\[\vdash a \circ v \rightarrow (n \circ (d \circ \leq_q) \rightarrow \]

\(\times \)

\[\vdash a \circ v \rightarrow (n \circ (d \circ \leq_q) \rightarrow (\neg n \circ (a \circ (v \delta q)) \rightarrow (m \circ v \rightarrow \]
\[(m \circ (d \circ \leq_q) \rightarrow (\neg a \circ (a \circ <_q) \rightarrow (\text{funk} (q) \rightarrow (d \circ (a \circ q) \rightarrow \]
\[(\neg \forall e \ [(e \circ (zw_q^{(m,d)}) \rightarrow e \circ (zw_{(m,n)}^{(v \delta q)}))])))] \]) \]) \] \hspace{1cm} (\gamma)

(376) ::

\[\vdash \vdash \vdash \vdash \vdash \vdash \vdash \]
\[\vdash \neg a \varphi (a \varphi <_{(v,q)}) \rightarrow\]

\[(\forall n \ [n \varphi (a \varphi \leq q)] \rightarrow\]

\[\neg \forall e [e \varphi v \rightarrow (e \varphi (xw^q_{(m,n)}) \rightarrow e \varphi (xw^{(v \cdot q)}_{(m,n)}])] \rightarrow\]

\[(a \varphi v \rightarrow (n \varphi (d \varphi \leq q) \rightarrow (m \varphi v \rightarrow (m \varphi (d \varphi \leq q)) \rightarrow\]

\[\neg a \varphi (a \varphi < q) \rightarrow (\text{funk}(q) \rightarrow (d \varphi (a \varphi q) \rightarrow\]

\[\neg \forall e [e \varphi v \rightarrow (e \varphi (xw^q_{(m,q)}) \rightarrow e \varphi (xw^{(v \cdot q)}_{(m,q)}))]))) (386)\]

§ 15b. Zerlegung.

Wir schaffen aus (386) noch das Vorderglied

\[\vdash \neg a \varphi (a \varphi <_{(v,q)}) \rightarrow\]

weg mit dem Satz

\[\vdash \neg a \varphi (a \varphi < q) \rightarrow \neg a \varphi (a \varphi <_{(v,q)}) \quad (\alpha)\]

der auf den Satz

\[\vdash x \varphi (y \varphi <_{(v,q)}) \rightarrow x \varphi (y \varphi < q) \quad (\beta)\]

zurückzuführen ist. Dieser folgt mit (123). Wir beweisen aber besser zunächst den etwas inhaltreicheren Satz

\[\vdash x \varphi (y \varphi <_{(v,q)}) \rightarrow x \varphi (y \varphi (<_{q}v)) \quad (\gamma)\]

§ 16b. Aufbau.

361 \[\vdash x \varphi (a \varphi (v \cdot q)) \rightarrow x \varphi (a \varphi (<_{q}v))\]

\[\vdash \forall a [x \varphi (a \varphi (v \cdot q)) \rightarrow x \varphi (a \varphi (<_{q}v))] \quad (\alpha)\]

362 \[\vdash d \varphi (a \varphi (v \cdot q)) \rightarrow d \varphi (a \varphi < q)\]

(275) : \[\vdash x \varphi (d \varphi < q) \rightarrow (d \varphi (a \varphi (v \cdot q)) \rightarrow x \varphi (a \varphi < q)) \quad (\beta)\]

(197) : \[\vdash a \varphi v \rightarrow (x \varphi (d \varphi < q) \rightarrow\]

\[(d \varphi (a \varphi (v \cdot q)) \rightarrow x \varphi (a \varphi (<_{q}v)))) \quad (\gamma)\]

(365, 188) : \[\vdash \vdash \vdash \vdash \vdash \vdash \vdash \vdash \]

\[^3\text{Wir schaffen aus (386) noch das Unterglied}\]

\[^\text{a}\text{Textkorrektur infolge modernisierter Formelnotation!} \]
\[\vdash x \circ (d \circ (<_q)) \rightarrow (d \circ (a \circ (v \circ q))) \rightarrow x \circ (a \circ (<_q)) \] (δ)

\[\vdash \forall \alpha [x \circ (d \circ (<_q)) \rightarrow \forall a [\forall \alpha (a \circ (v \circ q)) \rightarrow x \circ (a \circ (<_q)))] \] (ε)

(123) :

\[\vdash x \circ (y \circ (<_v)) \rightarrow (\forall a [x \circ (a \circ (v \circ q)) \rightarrow x \circ (a \circ (<_v))]) \rightarrow x \circ (y \circ (<_v))) \] (ζ)

(α) :

\[\vdash x \circ (y \circ (<_v)) \rightarrow x \circ (y \circ (<_v)) \] (387)

(188) :

\[\vdash x \circ (y \circ (<_v)) \rightarrow x \circ (y \circ) \] (388)

388 \[\vdash a \circ (a \circ (<_v)) \rightarrow a \circ (a \circ) \]

\[\times \]

\[\vdash \neg a \circ (a \circ) \rightarrow \neg a \circ (a \circ (<_v)) \] (389)

(386) :

\[\vdash \forall n [n \circ (a \circ) \rightarrow \neg \forall e [e \circ v \rightarrow (e \circ (zw_{(m,n)}^{(v \circ q)})) \rightarrow (zw_{(m,n)}^{(v \circ q)}))]] \rightarrow (a \circ v \rightarrow (m \circ (d \circ) \leq q) \rightarrow (m \circ (d \circ) \leq q) \rightarrow (\neg a \circ (a \circ) \rightarrow (funk(q) \rightarrow (d \circ (a \circ q) \rightarrow \neg \forall e [e \circ v \rightarrow (e \circ (zw_{(m,n)}^{(v \circ q)})) \rightarrow (zw_{(m,n)}^{(v \circ q)}))])]))] \] (α)

(370) :

\[\vdots \]
⊢ m \circ v \rightarrow (\text{funk}(q) \rightarrow (\neg a \circ (a \circ < q) \rightarrow \\
(\forall n [a \circ \le q]) \rightarrow
\neg \forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,a)}) \rightarrow e \circ (zw^{(v \circ 3) q}))])
\rightarrow
(m \circ (d \circ \le q) \rightarrow (d \circ (a \circ q) \rightarrow (n \circ (d \circ \le q) \rightarrow
\neg \forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,d)}) \rightarrow e \circ (zw^{(v \circ 3) q}))]))))
(\beta)
\sim
\vdash m \circ v \rightarrow (\text{funk}(q) \rightarrow (\neg a \circ (a \circ < q) \rightarrow \\
(\forall n [a \circ \le q]) \rightarrow
\neg \forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,a)}) \rightarrow e \circ (zw^{(v \circ 3) q}))]
\rightarrow
(m \circ (d \circ \le q) \rightarrow (d \circ (a \circ q) \rightarrow
\forall n [n \circ (d \circ \le q) \rightarrow
\neg \forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,d)}) \rightarrow e \circ (zw^{(v \circ 3) q}))]))))
(\gamma)
\times
\vdash m \circ v \rightarrow (\text{funk}(q) \rightarrow (\neg a \circ (a \circ < q) \rightarrow \\
(\neg \forall n [n \circ (d \circ \le q) \rightarrow
\neg \forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,d)}) \rightarrow e \circ (zw^{(v \circ 3) q}))]
\rightarrow
(m \circ (d \circ \le q) \rightarrow (d \circ (a \circ q) \rightarrow
\forall n [n \circ (a \circ \le q) \rightarrow
\neg \forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,a)}) \rightarrow e \circ (zw^{(v \circ 3) q}))])])
(\delta)
(I) :: \ldots \ldots \ldots \ldots \ldots \ldots
S.19

\[\vdash m \circ v \rightarrow (\text{funk}(q) \rightarrow (\neg a \circ (a \circ <_q) \rightarrow
\]

\[(\neg d \circ (d \circ <_q)^* \rightarrow
\]

\[\forall n [n \circ (d \circ \leq_q) \rightarrow \forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,d)}) \rightarrow e \circ (zw^{(v \circ \hat{q} q)}_{(m,n)})]) \rightarrow
\]

\[\neg d \circ (d \circ <_q) \rightarrow (m \circ (d \circ \leq_q) \rightarrow (d \circ (a \circ q) \rightarrow
\]

\[\forall n [n \circ (a \circ \leq_q) \rightarrow
\]

\[\forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,a)}) \rightarrow e \circ (zw^{(v \circ \hat{q} q)}_{(m,n)})])])]) \rightarrow
\]

\[\varepsilon
\]

(279) :: - - - - - - - -

\[\vdash m \circ v \rightarrow (\text{funk}(q) \rightarrow
\]

\[\forall \theta [(\neg d \circ (d \circ <_q) \rightarrow \neg \forall n [n \circ (d \circ \leq_q) \rightarrow
\]

\[\neg \forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,d)}) \rightarrow e \circ (zw^{(v \circ \hat{q} q)}_{(m,n)})]) \rightarrow
\]

\[(m \circ (d \circ \leq_q) \rightarrow (d \circ (a \circ q) \rightarrow (\neg a \circ (a \circ <_q) \rightarrow
\]

\[\neg \forall n [n \circ (a \circ \leq_q) \rightarrow
\]

\[\forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,a)}) \rightarrow e \circ (zw^{(v \circ \hat{q} q)}_{(m,n)})])])]) \rightarrow
\]

\[\zeta
\]

(152) :: - - - - - - - -

\[\vdash m \circ (c \circ \leq_q) \rightarrow (m \circ v \rightarrow (\text{funk}(q) \rightarrow
\]

\[\forall [n \circ (c \circ \leq_q) \rightarrow \forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,m)}) \rightarrow e \circ (zw^{(v \circ \hat{q} q)}_{(m,n)})]) \rightarrow
\]

\[\neg c \circ (c \circ <_q) \rightarrow \forall n [n \circ (c \circ \leq_q) \rightarrow
\]

\[\forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,c)}) \rightarrow e \circ (zw^{(v \circ \hat{q} q)}_{(m,n)})])])]) \rightarrow
\]

\[\eta
\]

(390)

§ 17. Zerlegung.
Wir beweisen nun den Satz

\[
\vdash \text{funk} (q) \rightarrow (\neg \ m \cdot (m \cdot <_{q}) \rightarrow \forall n [n \cdot (m \cdot \leq_{q}) \rightarrow \neg \forall e [e \cdot v \rightarrow (e \cdot (zw m, n) \rightarrow e \cdot (zw (v \cdot q)))])],
\]

der zurückzuführen ist auf den Satz | S.20

\[
\vdash e \cdot (zw (m, m) \rightarrow (\text{funk} (q) \rightarrow (\neg \ m \cdot (m \cdot <_{q}) \rightarrow e \cdot (zw (v \cdot q))))],
\]

den wir aus (344) und (282) ableiten. Wir haben dazu noch den Satz

\[
\vdash \text{funk} (q) \rightarrow \text{funk} (v \cdot q),
\]

nöthig, der aus (243) und dem Satz

\[
\vdash e \cdot (d \cdot (v \cdot q)) \rightarrow (e \cdot (a \cdot (v \cdot q))) \rightarrow \neg \ d \cdot (a \cdot <_{q}),
\]

folgt.

§ 18. Aufbau.

\[
140 \vdash m \cdot (m \cdot \leq_{p})
\]

(344) \[
\vdash \text{funk} (p) \rightarrow (\neg \ m \cdot (m \cdot <_{p}) \rightarrow m \cdot (zw (m, m)))
\]

\[
136 \vdash e \cdot (d \cdot <_{q}) \rightarrow e \cdot (d \cdot \leq_{q})
\]

(362) ::

\[
\vdash e \cdot (d \cdot (v \cdot q)) \rightarrow e \cdot (d \cdot \leq_{q})
\]

\[
360 \vdash (e \cdot (a \cdot (v \cdot q))) \rightarrow e \cdot (a \cdot (v \cdot q))
\]

(\alpha) ::

\[
\vdash e \cdot (a \cdot (v \cdot q)) \rightarrow (e \cdot (a \cdot (v \cdot q))) \rightarrow \neg e \cdot (a \cdot (v \cdot q))
\]

(\beta) ::

\[
\vdash e \cdot (d \cdot (v \cdot q)) \rightarrow (d \cdot (a \cdot <_{q}) \rightarrow \neg e \cdot (a \cdot (v \cdot q)))
\]

(\gamma) ::

\[
\vdash e \cdot (d \cdot (v \cdot q)) \rightarrow (e \cdot (a \cdot (v \cdot q))) \rightarrow \neg d \cdot (a \cdot <_{q})
\]

(\delta) ::

\[
\vdash e \cdot (d \cdot (v \cdot q)) \rightarrow (e \cdot (a \cdot (v \cdot q))) \rightarrow \neg d \cdot (a \cdot <_{q})
\]

(\epsilon) ::
\(\vdash e \circ (a \circ \leq_q) \rightarrow (\text{funk}(q) \rightarrow (e \circ (d \circ \leq_q) \rightarrow \text{funk}(v \circ q)) \rightarrow (e \circ (a \circ (v \circ q)) \rightarrow a \circ (d \circ \leq_q))))\) (\(\alpha\))

\((392, 392) :: \ldots \quad \vdash \text{funk}(q) \rightarrow (e \circ (d \circ (v \circ q)) \rightarrow (e \circ (a \circ (v \circ q)) \rightarrow a \circ (d \circ \leq_q)))\) (\(\beta\))

\((130) :: \ldots \quad \vdash \text{funk}(q) \rightarrow (e \circ (d \circ (v \circ q)) \rightarrow (e \circ (a \circ (v \circ q)) \rightarrow d = a))\) (\(\gamma\))

\((396) :: \ldots \quad \vdash \text{funk}(q) \rightarrow (e \circ (d \circ (v \circ q)) \rightarrow (e \circ (a \circ (v \circ q)) \rightarrow d = a))\) (\(\delta\))

\(\vdash \text{funk}(q) \rightarrow \forall e \forall d \left[e \circ (d \circ (v \circ q)) \rightarrow (e \circ a \circ (v \circ q) \rightarrow a = a) \right]\) (\(\epsilon\))

\((16) :: \ldots \quad \vdash \text{funk}(q) \rightarrow \text{funk}(v \circ q)\) (397)

\((391) :: \ldots \quad \vdash \text{funk}(q) \rightarrow \text{funk}(v \circ q)\)

S.21

\(\vdash \text{funk}(q) \rightarrow (\neg m \circ (m \circ \leq_{(v \circ q)}) \rightarrow m \circ (zw^{(v \circ q)}{(m,m)})\)\) (\(\alpha\))

\((389) :: \ldots \quad \vdash \text{funk}(q) \rightarrow (\neg m \circ (m \circ \leq_{q}) \rightarrow m \circ (zw^{(v \circ q)}{(m,m)})\)\) (\(\beta\))

\((IIIa) :: \ldots \quad \vdash e = m \rightarrow (\text{funk}(q) \rightarrow (\neg m \circ (m \circ \leq_{q}) \rightarrow e \circ (zw^{(v \circ q)}{(m,m)})\)\) (\(\gamma\))

\((282) :: \ldots \quad \vdash e \circ (zw^{q}{(m,m)}) \rightarrow (\text{funk}(q) \rightarrow (\neg m \circ (m \circ \leq_{q}) \rightarrow e \circ (zw^{(v \circ q)}{(m,m)})\)\) (\(\delta\))

\((I) :: \ldots \quad \vdash e \circ (zw^{(v \circ q)}{(m,m)})\)
\[\vdash \text{funk}(q) \rightarrow (\neg m \circ (m \circ <_{q}) \rightarrow (e \circ v \rightarrow (e \circ (zw^{q}_{(m,m)})) \rightarrow (e \circ (zw^{q}_{(m,m)})))) \]

\[\vdash \text{funk}(q) \rightarrow (\neg m \circ (m \circ <_{q}) \rightarrow \forall e [e \circ v \rightarrow (e \circ (zw^{q}_{(m,m)})) \rightarrow (e \circ (zw^{q}_{(m,m)}))]) \]
\[\vdash \text{funk}(q) \rightarrow (\neg m \circ (m \circ <_q)) \rightarrow\]

\[\neg \forall n [m \circ (m \circ \leq_q) \rightarrow\]

\[\neg \forall e [e \circ v \rightarrow (e \circ (zw^q\langle m, n \rangle) \rightarrow e \circ (zw^q\langle m, n \rangle))]]\]
(\gamma)

\[368 \vdash m \circ (c \circ \leq_q) \rightarrow (m \circ v \rightarrow (\neg c \circ (c \circ <_q) \rightarrow\]

\[\neg \forall n [\neg \forall e [e \circ v \rightarrow (e \circ (zw^q\langle m, c \rangle) \rightarrow e \circ (zw^q\langle m, n \rangle))]]\]
(400)

\[368 \vdash x \circ (m \circ (v \circ \leq_q)) \rightarrow x \circ (m \circ (\leq_q \langle v \circ q \rangle))\]
(188)

\[\vdash x \circ (m \circ (v \circ \leq_q)) \rightarrow x \circ (m \circ \leq_q)\]
(401)

\[368 \vdash x \circ (m \circ (v \circ \leq_q)) \rightarrow x \circ (m \circ (\leq_q \langle v \circ q \rangle))\]
(191)

\[\vdash x \circ (m \circ (v \circ \leq_q)) \rightarrow x \circ m\]
(402)

\[368 \vdash m \circ (c \circ \leq_q) \rightarrow (x \circ (m \circ (v \circ \leq_q)) \rightarrow (\neg c \circ (c \circ <_q) \rightarrow\]

\[\neg \forall n [\neg \forall e [e \circ v \rightarrow (e \circ (zw^q\langle m, c \rangle) \rightarrow e \circ (zw^q\langle m, n \rangle))]]\]
(403)

Um mit (403) den Satz (\beta) des§ 7 abzuleiten, brauchen wir den Satz

\[, \vdash \neg \forall n [\neg \forall e [e \circ v \rightarrow (e \circ (zw^q\langle m, c \rangle) \rightarrow e \circ (zw^q\langle m, n \rangle))]] \rightarrow\]

\[(c \circ v \rightarrow (c \circ (zw^q\langle m, c \rangle) \rightarrow m \circ (c \circ \leq(q \circ v))) \rightarrow\]

\[a)\text{ Um das Vorderglied} \rightarrow \neg m \circ (c \circ \leq_q)\]

\[a^*\text{Um das Unterglied}\]

\[a^{**}\text{Textkorrektur infolge modernisierter Formelnotation!}\]
wegzuschaffen, bedürfen wir dann noch des Satzes
\[\vdash x \in (m, q) \rightarrow (x \in (c, q) \rightarrow (x \in (c, (\leq q))) \rightarrow \\
(\neg x \in (m, (\leq q))) \rightarrow m \in (c, (\leq q))) \] \tag{\beta}

der aus (243) folgt. Die Vorderglieder
\[\neg x \in (m, (\leq q))) \]

sind durch \[\neg x \in (m, q) \rightarrow \] zu ersetzen.

§ 20. Aufbau.

\[\vdash x \in (m, (v, q)) \rightarrow \\
\neg (x \in (m, (\leq q))) \rightarrow x \in (m, (\leq q))) \]

\((Ic) \cdot \)

\[\vdash x \in (m, (v, q)) \rightarrow \neg x \in (m, (\leq q)) \] \tag{404}

\[\vdash c \in (z(v, q)) \rightarrow m \in (c, (\leq (v, q))) \]

\((IIa) \cdot \)

\[\vdash c \in (z(v, q)) \rightarrow m \in (c, (\leq (v, q))) \]

\[\neg \forall e [c \in (z(v, q)) \rightarrow c \in (z(v, q))] \rightarrow \\
(c \in (z(v, q)) \rightarrow m \in (c, (\leq (v, q)))) \]

\[(\alpha) \times \]

\[\neg m \in (c, (\leq (v, q))) \rightarrow (c \in (z(v, q)) \rightarrow \\
\neg \forall e [c \in (z(v, q)) \rightarrow c \in (z(v, q)))] \]

\[(\beta) \neg \]

S.23

\[\neg m \in (c, (\leq (v, q))) \rightarrow (c \in (z(v, q)) \rightarrow \\
\forall n [\neg \forall e [c \in (z(v, q)) \rightarrow c \in (z(v, q))]] \]

\[(\gamma) \times \]

7Die Unterglieder

8Textkorrektur infolge modernisierter Formelnotation!
\[\vdash \forall n \rightarrow \forall e [e \circ v \rightarrow (e \circ (zw^q_{(m,c)})) \rightarrow e \circ (zw^{(v \circ q)}_{(m,n)})] \rightarrow (e \circ v \rightarrow (e \circ (zw^q_{(m,c)})) \rightarrow m \circ (e \circ (\leq_{(v \circ q)}))) \]

(403, 344) :: \[\vdash x \circ (m \circ (v \circ q)) \rightarrow (e \circ v \rightarrow (funk(q) \rightarrow (\neg e \circ (c \circ <) \rightarrow (m \circ (e \circ \leq) \rightarrow m \circ (c \circ \leq_{(v \circ q)})))) \]

(IIa) :: \[\vdash x \circ (m \circ (v \circ q)) \rightarrow (e \circ v \rightarrow (funk(q) \rightarrow (\forall i \rightarrow c \circ e (i \circ e <) \rightarrow (m \circ (e \circ \leq) \rightarrow m \circ (c \circ \leq_{(v \circ q)})))) \]

\[5 \vdash x \circ (c \circ (\leq^v_{q})) \rightarrow (c \circ (m \circ \leq_q) \rightarrow x \circ (m \circ (\leq^v_{q}))) \]

\[\neg x \circ (c \circ (\leq^v_{q})) \rightarrow \neg c \circ (m \circ <) \]

(243) :: \[\vdash x \circ (m \circ \leq) \rightarrow (\forall i \rightarrow i \circ e (i \circ e <) \rightarrow (x \circ (c \circ \leq)) \rightarrow (x \circ (e \circ (\leq^v_{q})) \rightarrow (\neg x \circ (m \circ (\leq^v_{q})) \rightarrow m \circ (c \circ \leq)))) \]

(401, 404) :: \[\vdash funk(q) \rightarrow (x \circ (c \circ \leq) \rightarrow (x \circ (c \circ (\leq^v_{q})))) \rightarrow (x \circ (m \circ (v \circ q)) \rightarrow m \circ (c \circ \leq)) \]

(188) :: \[\vdash funk(q) \rightarrow (x \circ (c \circ \leq) \rightarrow (x \circ (c \circ (\leq^v_{q})))) \rightarrow (x \circ (m \circ (v \circ q)) \rightarrow m \circ (c \circ \leq)) \]
\[
\vdash \text{funk}(q) \rightarrow (x \circ (c \circ (\leq q))) \\
(x \circ (m \circ (v \circ q)) \rightarrow m \circ (c \circ \leq q)))
\]

(407) :

\[
\vdash c \circ v \rightarrow (\forall i \neg i \circ (i \circ < q) \rightarrow \text{funk}(q) \rightarrow (x \circ (c \circ (\leq q))) \\
(x \circ (m \circ (v \circ q)) \rightarrow m \circ (c \circ \leq (v \circ q))))
\]

(191) ::

\[
\vdash \forall i \neg i \circ (i \circ < q) \rightarrow \text{funk}(q) \rightarrow (x \circ (m \circ (v \circ q)) \rightarrow \\
(x \circ (c \circ (\leq q))) \rightarrow m \circ (c \circ \leq (v \circ q)))
\]

(IVa) ::

\[
\vdash \forall i \neg i \circ (i \circ < q) \rightarrow \text{funk}(q) \rightarrow (x \circ (m \circ (v \circ q)) \rightarrow \\
[x \circ (c \circ (\leq q))] = [\neg m \circ (c \circ \leq (v \circ q))])
\]

(369) ::

\[
\vdash \forall i \neg i \circ (i \circ < q) \rightarrow \text{funk}(q) \rightarrow (x \circ (m \circ (v \circ q)) \rightarrow \\
[x \circ (c \circ (\leq q))] = [\neg m \circ (c \circ \leq (v \circ q))])
\]

(22) :

\[
\vdash \forall i \neg i \circ (i \circ < q) \rightarrow \text{funk}(q) \rightarrow (x \circ (m \circ (v \circ q)) \rightarrow \\
[x \circ (c \circ (\leq q)^{-1})] = [\neg m \circ (c \circ \leq (v \circ q))]}
\]

(22) :

\[
\vdash \forall i \neg i \circ (i \circ < q) \rightarrow \text{funk}(q) \rightarrow (x \circ (m \circ (v \circ q)) \rightarrow \\
[x \circ (c \circ (\leq q)^{-1})] = [\neg m \circ (c \circ \leq (v \circ q)))]
\]

\[
\vdash \top
\]
\[\vdash \forall i \lnot (i \varphi < q) \rightarrow \text{funk}(q) \rightarrow (x \vartheta (m \vartheta (v \delta q))) \rightarrow \forall a [\lnot a \vartheta (x \vartheta (\leq q^{\uparrow} - 1))] = \lnot a \vartheta (m \vartheta \leq^\downarrow_1 (v \delta q)) \]
(\eta)

(96) :
\[\vdash \forall i \lnot (i \varphi < q) \rightarrow \text{funk}(q) \rightarrow (x \vartheta (m \vartheta (v \delta q))) \rightarrow \text{anz}(x \vartheta (\leq q^{\uparrow} - 1)) = \text{anz}(m \vartheta \leq^\downarrow_1 (v \delta q)) \]
(\delta)

(IIIa) :
\[\vdash \forall i \lnot (i \varphi < q) \rightarrow \text{funk}(q) \rightarrow (x \vartheta (m \vartheta (v \delta q))) \rightarrow (\infty = \text{anz}(m \vartheta \leq^\downarrow_1 (v \delta q)) \rightarrow \infty = \text{anz}(x \vartheta (\leq q^{\uparrow} - 1))) \]
(408)

S.25

\[\vdash \forall i \lnot (i \varphi < q) \rightarrow \text{funk}(q) \rightarrow \forall a [x \vartheta (a \vartheta \leq q) \rightarrow \forall e [\lnot a \vartheta (e \vartheta (\leq q^{\uparrow} - 1))]] \rightarrow (x \vartheta (m \vartheta (v \delta q))) \rightarrow \infty = \text{anz}(x \vartheta (\leq q^{\uparrow} - 1))) \]

\(\text{c) Beweis des Satzes}\)

\[\vdash \forall i \lnot (i \varphi < q) \rightarrow \text{funk}(q) \rightarrow \forall a [x \vartheta (a \vartheta \leq q) \rightarrow \forall e [\lnot a \vartheta (e \vartheta (\leq q^{\uparrow} - 1))]] \rightarrow (x \vartheta (m \vartheta (v \delta q))) \rightarrow \infty = \text{anz}(x \vartheta (\leq q^{\uparrow} - 1))) \]

\[\text{§ 21. Zerlegung.}\]

Um nun von (408) aus zu dem Satze zu gelangen, dass bei unserm Voraussetzungen über \(q \) und \(m \) Endlos die Anzahl der Glieder der mit \(x \) anfangenden \(q \)-Reihe ist, die unter den \(v \)-Begriff fallen, wenn es zu jedem Gliede der mit \(x \) anfangenden \(q \)-Reihe ein darauf folgendes gibt, das unter den \(v \)-Begriff fällt, müssen wir (262) anwenden. Bevor wir dies tun, wollen wir diesen Satz für unsere Zwecke passender gestalten. Wir haben nämlich in (262) für \(q \cdot v \delta q \cdot q' \) zu schreiben. In den dann auftretenden Vordergliedern, auf Textkorrektur infolge modernisierter Formelnotation!

In den dann auftretenden Untergliedern, auf Textkorrektur infolge modernisierter Formelnotation!

#Textkorrektur infolge modernisierter Formelnotation!
beweisen wir mit den Sätzen
\[\vdash \forall a \left[x \circ (a \circ \leq q) \rightarrow \neg \forall e \left[\neg a \circ (e \circ (\leq q_v)) \right] \right] \rightarrow \]
\[(d \circ (m \circ \leq_{v \circ q}^1)) \rightarrow \]
\[(x \circ (m \circ \leq q)) \rightarrow \neg \forall e \left[\neg d \circ (e \circ (\leq q_v^1)) \right] \right] \] \((\beta) \)
\[\vdash \text{funk} (q) \rightarrow (\neg r \circ (r \circ < q)) \rightarrow \]
\[(\forall e \left[\neg d \circ (e \circ (v \circ q)) \right] \rightarrow \neg d \circ (r \circ (\leq q_v))) \right] \] \((\gamma) \)
Um (\(\beta \)) mit IIa zu beweisen brauchen wir den Satz
\[\vdash d \circ (m \circ \leq_{v \circ q}^1) \rightarrow (x \circ (m \circ \leq q) \rightarrow x \circ (d \circ \leq q)) \] \((\delta) \)
der mit (322) aus
\[\vdash m \circ (d \circ \leq_{v \circ q}^1) \rightarrow m \circ (d \circ \leq q) \] \((\epsilon) \)
folgt.

\[\textbf{§ 22. Aufbau.} \]

388 \[\vdash m \circ (d \circ \leq_{v \circ q}^1) \rightarrow m \circ (d \circ < q) \]
(136) :: \[\vdash m \circ (d \circ <_{v \circ q}^1) \rightarrow m \circ (d \circ \leq q) \] \((\alpha) \)
(200) :: \[\vdash m \circ (d \circ \leq_{v \circ q}^1) \rightarrow (\neg d = m \rightarrow m \circ (d \circ \leq q)) \] \((\beta) \)
(201) :: \[\vdash m \circ (d \circ \leq_{v \circ q}^1) \rightarrow m \circ (d \circ \leq q) \] \((\alpha) \)
(409)

S.26

\[\vdash m \circ (d \circ \leq_{v \circ q}^1) \rightarrow m \circ (d \circ \leq q) \] \((23) \)
(24) :: \[\vdash d \circ (m \circ \leq_{v \circ q}^1) \rightarrow m \circ (d \circ \leq q) \] \((\alpha) \)
(322) :: \[\vdash d \circ (m \circ \leq_{v \circ q}^1) \rightarrow (x \circ (m \circ \leq q) \rightarrow x \circ (d \circ \leq q)) \] \((\beta) \)
(IIa) :: \[\vdash \forall a \left[x \circ (a \circ \leq q) \rightarrow \neg \forall e \left[\neg a \circ (e \circ (\leq q_v)) \right] \right] \rightarrow \]
\[(d \circ (m \circ \leq_{v \circ q}^1)) \rightarrow \]
\[(x \circ (m \circ \leq q)) \rightarrow \neg \forall e \left[\neg d \circ (e \circ (\leq q_v)) \right] \] \((410) \)

\[\textbf{§ 23. Zerlegung.} \]

Wir beweisen nun den Satz (\(\gamma \)) des § 21. Dieser Satz sagt: wenn es keinen Gegenstand gibt, der zuerst unter den auf d in der q-Reihe folgenden unter den v-Begriff fällt, so gibt es überhaupt keinen Gegenstand, der unter den v-Begriff fällt und in der q-Reihe auf d folgt, sofern die q-Beziehung unserm Voraussetzungen entspricht. Er ist ähnlich dem Satze (358) und kann daraus abgeleitet werden. Wenn d zu keinem Gegenstande in der q-Beziehung steht, so giebt es keinen Gegenstand, der auf d in der q-Reihe folgt, und also auch keinen solchen,
so können wir zeigen, dass ein Gegenstand nicht zuerst in der mit \(\alpha \) anfangenden \(q \)-Reihe unter dem \(\beta \)-Begriff fällt, wenn \(n \) nicht unter den auf \(d \) in der \(q \)-Reihe folgenden zuerst unter dem \(\beta \)-Begriff fällt:

\[
\vdash \neg d \varnothing (n \varnothing (v \varnothing q)) \rightarrow (\text{funk} (q) \rightarrow (d \varnothing (a \varnothing q) \rightarrow \neg a \varnothing (n \varnothing (v \varnothing q)))) \quad (\alpha)
\]

Ferner haben wir den Satz

\[
\vdash d \varnothing (r \varnothing (\langle q \rangle^v)) \rightarrow (\text{funk} (q) \rightarrow (d \varnothing (a \varnothing q) \rightarrow a \varnothing (r \varnothing (\langle q \rangle^v)))) \quad (\beta)
\]

abzuleiten, was leicht mit (242) geschehen kann. Um (\(\alpha \)) zu beweisen, gehen wir aus von dem Satze (384):

\[
\vdash d \varnothing (n \varnothing (\langle q \rangle^v)) \rightarrow (\neg d \varnothing (n \varnothing (\langle q \circ \langle q \rangle^v))) \rightarrow d \varnothing (n \varnothing (v \varnothing q))
\]

und haben nun die Sätze

\[
\vdash a \varnothing (n \varnothing (\langle q \rangle^v)) \rightarrow (d \varnothing (a \varnothing q) \rightarrow d \varnothing (n \varnothing (\langle q \rangle^v))) \quad (\gamma)
\]

und

\[
\vdash \neg a \varnothing (n \varnothing (\langle q \circ \langle q \rangle^v))) \rightarrow (\text{funk} (q) \rightarrow (d \varnothing (a \varnothing q) \rightarrow

\neg d \varnothing (n \varnothing (\langle q \circ \langle q \rangle^v)))) \quad (\delta)
\]

zu beweisen, von denen (\(\gamma \)) leicht aus (132) folgt. (\(\delta \)) ist mit (15) abzuleiten:

\[
\vdash \forall \{r \varnothing (n \varnothing \langle q \rangle) \rightarrow (\neg d \varnothing (r \varnothing (\langle q \rangle^v))) \rightarrow (\neg d \varnothing (n \varnothing (\langle q \circ \langle q \rangle^v)))
\]

Das geschieht mit (5):

\[
\vdash a \varnothing (r \varnothing (\langle q \rangle^v)) \rightarrow (r \varnothing (n \varnothing \langle q \rangle) \rightarrow a \varnothing (n \varnothing (\langle q \circ \langle q \rangle^v)))
\]

(\(\beta \)).

S.27

§ 24. **Aufbau.**

242

\[
\vdash d \varnothing (r \varnothing \langle q \rangle) \rightarrow (\text{funk} (q) \rightarrow (d \varnothing (a \varnothing q) \rightarrow a \varnothing (r \varnothing \langle q \rangle))
\]

(197) :

\[
\vdash r \varnothing v \rightarrow (d \varnothing (r \varnothing \langle q \rangle) \rightarrow (\text{funk} (q) \rightarrow (d \varnothing (a \varnothing q) \rightarrow

a \varnothing (r \varnothing (\langle q \rangle^v)))))) \quad (\alpha)
\]

(188, 191) :

\[
\vdash d \varnothing (r \varnothing (\langle q \rangle^v)) \rightarrow (\text{funk} (q) \rightarrow (d \varnothing (a \varnothing q) \rightarrow

a \varnothing (r \varnothing (\langle q \rangle^v)))) \quad (411)
\]

(5) :

\[
\vdash d \varnothing (r \varnothing (\langle q \rangle^v)) \rightarrow (\text{funk} (q) \rightarrow (d \varnothing (a \varnothing q) \rightarrow

(r \varnothing (n \varnothing \langle q \rangle) \rightarrow a \varnothing (n \varnothing (\langle q \circ \langle q \rangle^v)))))) \quad (\alpha)
\]

\[\times\]
\(\vdash \neg a \varnothing (n \varnothing (\leq_q \circ \leq_q v)) \rightarrow (\text{funk } q \rightarrow (d \varnothing (a \varnothing q) \rightarrow (r \varnothing (n \varnothing < q) \rightarrow \neg d \varnothing (r \varnothing (\leq_q v)))))) \)

(\beta)

\(\vdash \neg a \varnothing (n \varnothing (\leq_q \circ \leq_q v)) \rightarrow (\text{funk } q \rightarrow (d \varnothing (a \varnothing q) \rightarrow \forall t [t \varnothing (n \varnothing < q) \rightarrow \neg d \varnothing (t \varnothing (\leq_q v))])) \)

(\gamma)

(15):

\(\vdash \neg a \varnothing (n \varnothing (\leq_q \circ \leq_q v)) \rightarrow (\text{funk } q \rightarrow (d \varnothing (a \varnothing q) \rightarrow \neg d \varnothing (n \varnothing (\leq_q v)))) \)

(\delta)

(384):

\(\vdash d \varnothing (n \varnothing (\leq_q v)) \rightarrow (\neg a \varnothing (n \varnothing (\leq_q \circ \leq_q v)) \rightarrow (\text{funk } q \rightarrow (d \varnothing (a \varnothing q) \rightarrow d \varnothing (n \varnothing (v \circ q)))))) \)

(\varepsilon)

\[
132 \ \vdash a \varnothing (n \varnothing \leq q) \rightarrow (d \varnothing (a \varnothing q) \rightarrow d \varnothing (n \varnothing < q))
\]

(197):

\(\vdash n \varnothing \circ v \rightarrow (a \varnothing (n \varnothing \leq q) \rightarrow (d \varnothing (a \varnothing q) \rightarrow d \varnothing (n \varnothing (\leq_q v)))) \)

(\zeta)

(188, 191):

\(\vdash a \varnothing (n \varnothing (\leq_q v)) \rightarrow (d \varnothing (a \varnothing q) \rightarrow d \varnothing (n \varnothing (\leq_q v)))) \)

(\eta)

(\xi):

\(\vdash a \varnothing (n \varnothing (\leq_q v)) \rightarrow (\neg a \varnothing (n \varnothing (\leq_q \circ \leq_q v)) \rightarrow (\text{funk } q \rightarrow (d \varnothing (a \varnothing q) \rightarrow d \varnothing (n \varnothing (v \circ q))))) \)

(\theta)

(368, 404):

\(\vdash a \varnothing (n \varnothing (v \circ q)) \rightarrow (\text{funk } q \rightarrow (d \varnothing (a \varnothing q) \rightarrow d \varnothing (n \varnothing (v \circ q)))) \)

(\iota)

\(\times\)

\(\vdash \neg d \varnothing (n \varnothing (v \circ q)) \rightarrow (\text{funk } q \rightarrow (d \varnothing (a \varnothing q) \rightarrow \neg a \varnothing (n \varnothing (v \circ q)))) \)

(\kappa)

(IIa):

\(- \ - \ - \ - \ - \ - \ - \ - \)
\[
\vdash \forall e \left[\neg d \circ (e \circ (v \circ q)) \right] \rightarrow (\text{funk} (q) \rightarrow (d \circ (a \circ q) \rightarrow \\
\neg a \circ (n \circ (v \circ q)))
\]

(λ)

S.28

\[
\vdash \forall e \left[\neg d \circ (e \circ (v \circ q)) \right] \rightarrow (\text{funk} (q) \rightarrow (d \circ (a \circ q) \rightarrow \\
\forall a \left[\neg a \circ (a \circ (v \circ q)) \right])
\]

(μ)

(358) : -- -- -- -- --

\[
\vdash \forall e \left[\neg d \circ (e \circ (v \circ q)) \right] \rightarrow (\text{funk} (q) \rightarrow (d \circ (a \circ q) \rightarrow \\
(\neg r \circ (r \circ <_q) \rightarrow \neg a \circ (r \circ (\leq q)))
\]

(ν)

\times

\[
\vdash a \circ (r \circ (\leq q)) \rightarrow (\text{funk} (q) \rightarrow (d \circ (a \circ q) \rightarrow \\
(\neg r \circ (r \circ <_q) \rightarrow \neg \forall e \left[\neg d \circ (e \circ (v \circ q)) \right])
\]

(ξ)

(411) :: -- -- -- -- -- --

\[
\vdash d \circ (r \circ (\leq q)) \rightarrow (\text{funk} (q) \rightarrow (d \circ (a \circ q) \rightarrow \\
(\neg r \circ (r \circ <_q) \rightarrow \neg \forall e \left[\neg d \circ (e \circ (v \circ q)) \right])
\]

(ο)

\times

\[
\vdash d \circ (r \circ (\leq q)) \rightarrow (\text{funk} (q) \rightarrow (\forall e \left[\neg d \circ (e \circ (v \circ q)) \right] \rightarrow \\
(\neg r \circ (r \circ <_q) \rightarrow \neg d \circ (a \circ q)))
\]

(π)

\[
\vdash d \circ (r \circ (\leq q)) \rightarrow (\neg r \circ (r \circ <_q) \rightarrow (\text{funk} (q) \rightarrow \\
(\forall e \left[\neg d \circ (e \circ (v \circ q)) \right] \rightarrow \forall e \left[\neg d \circ (e \circ q) \right])
\]

(412)

(22) : -- -- -- -- --

\[
\vdash \forall e \left[\neg d \circ (e \circ q) \right] \rightarrow \neg d \circ (a \circ q)
\]

(α)

\[
\vdash \forall e \left[\neg d \circ (e \circ q) \rightarrow \neg a \circ (d \circ q^{-1})
\]

(α)
⊢ ∀ e [¬ d \circ (e \circ q)] \rightarrow ∀ e [¬ e \circ (d \circ q^{-1})]

(\beta)

(125) :

⊢ ∀ e [¬ d \circ (e \circ q)] \rightarrow \neg r \circ (d \circ <_{q^{-1}})

(\gamma)

×

⊢ r \circ (d \circ <_{q^{-1}}) \rightarrow ∀ e [¬ d \circ (e \circ q)]

(\delta)

(302) ::

⊢ d \circ (r \circ <_{q}) \rightarrow ∀ e [¬ d \circ (e \circ q)]

(413)

(188) ::

⊢ d \circ (r \circ (\langle_{q}^{\nu})) \rightarrow ∀ e [¬ d \circ (e \circ q)]

(\alpha)

×

⊢ ∀ e [¬ d \circ (e \circ q)] \rightarrow d \circ (r \circ (\langle_{q}^{\nu}))

(\beta)

(412) ::

⊢ funk (q) \rightarrow (\neg r \circ (r \circ <_{q}) \rightarrow (\forall e [¬ d \circ (e \circ (v \circ \delta q)]) \rightarrow

(d \circ (r \circ (\langle_{q}^{\nu})) \rightarrow ¬ d \circ (r \circ (\langle_{q}^{\nu})))))))

(\gamma)

(Ig) :

⊢ funk (q) \rightarrow (\neg r \circ (r \circ <_{q}) \rightarrow (\forall e [¬ d \circ (e \circ (v \circ \delta q)]) \rightarrow

¬ d \circ (r \circ (\langle_{q}^{\nu}))))))

(\delta)

(IIa) ::

⊢ funk (q) \rightarrow (\forall i [¬ i \circ (i \circ <_{q})] \rightarrow (\forall e [¬ d \circ (e \circ (v \circ \delta q)]) \rightarrow

¬ d \circ (r \circ (\langle_{q}^{\nu}))))))

(\epsilon)

×

⊢ funk (q) \rightarrow (\forall i [¬ i \circ (i \circ <_{q})] \rightarrow (\forall e [¬ d \circ (e \circ (v \circ \delta q)]) \rightarrow

∀ e [¬ d \circ (e \circ (\langle_{q}^{\nu}))))))

(\zeta)

×
\[\vdash \text{funk}(q) \rightarrow (\forall i \lnot i e (i e < q)) \rightarrow (\forall \epsilon \lnot d \epsilon (\epsilon \epsilon (d < q))) \rightarrow (\forall \epsilon \lnot d \epsilon (\epsilon \epsilon (v < q)))\]

\[\lnot \forall \epsilon \lnot d \epsilon (\epsilon \epsilon (v < q)) (\eta)\]

\[(410) :: \]

\[\vdash \text{funk}(q) \rightarrow (\forall i \lnot i e (i e < q)) \rightarrow (\forall \alpha \lnot \zeta \alpha (\alpha \zeta (\alpha \zeta < q))) \rightarrow (\forall \epsilon \lnot d \epsilon (\epsilon \epsilon (v < q))) \rightarrow (\forall \epsilon \lnot d \epsilon (\epsilon \epsilon (v < q))) (\epsilon)\]

\[\times\]

\[\vdash \text{funk}(q) \rightarrow (\forall i \lnot i e (i e < q)) \rightarrow (\forall \alpha \lnot \zeta \alpha (\alpha \zeta (\alpha \zeta < q))) \rightarrow (\forall \epsilon \lnot d \epsilon (\epsilon \epsilon (v < q))) \rightarrow (\forall \epsilon \lnot d \epsilon (\epsilon \epsilon (v < q))) (\forall \epsilon \lnot d \epsilon (\epsilon \epsilon (v < q))) (414)\]

\[389 \vdash \lnot a \epsilon (a \epsilon < q) \rightarrow \lnot a \epsilon (a \epsilon < (v \delta \epsilon q)) (IIa) :: \]

\[\vdash \forall i \lnot i e (i e < q) \rightarrow \lnot a \epsilon (a \epsilon < (v \delta \epsilon q)) (\alpha)\]

\[\lnot \forall i \lnot i e (i e < q) \rightarrow \forall i \lnot i e (i e < (v \delta \epsilon q)) (415)\]

\[(262) :: \]
\[\forall i \neg i e (i e < q) \rightarrow \text{funk}(v \delta q) \rightarrow \infty = \text{anz}(m \ e \leq_{(v \delta q)})\]

\[(\forall \alpha) \quad \vdash \quad \neg \forall e (e e < q) \rightarrow \neg \text{funk}(q) \rightarrow \infty = \text{anz}(m \ e \leq_{(v \delta q)})\]

\[(\forall \beta) \quad \vdash \quad \neg \forall e (e e < q) \rightarrow x e (m \ e \leq_{(v \delta q)}) \rightarrow \infty = \text{anz}(x e (\leq_{(v \delta q)})^{-1}))\]

\[(\forall \gamma) \quad \vdash \quad \neg \forall e (e e < q) \rightarrow x e (m \ e \leq_{(v \delta q)}) \rightarrow \infty = \text{anz}(x e (\leq_{(v \delta q)})^{-1}))\]

\[\vdash x e (c e \leq q) \rightarrow (\forall e \neg e e (e e < q) \rightarrow (\neg e e (c e < q) \rightarrow (\text{funk}(q) \rightarrow (x e (m \ e \leq_{(v \delta q)}) \rightarrow \text{anz}(0) e \text{anz}(x e (\leq_{(v \delta q)}^{-1}) e \leq_{nf})))))\]

d) Beweis des Satzes

\[\vdash x e (c e \leq q) \rightarrow (\forall e \neg e e (e e < q) \rightarrow (\neg e e (c e < q) \rightarrow (\text{funk}(q) \rightarrow (x e (m \ e \leq_{(v \delta q)}) \rightarrow \text{anz}(0) e \text{anz}(x e (\leq_{(v \delta q)}^{-1}) e \leq_{nf})))))\]

§ 25. Zerlegung.

Es bleibt uns übrig zu zeigen, dass die Anzahl der Glieder der mit \(x\) anfangenden \(q\)-Reihe, die unter den \(v\)-Begriff fallen, endlich ist, wenn auf ein Glied \(c\) dieser Reihe kein unter den \(v\)-Begriff fallendes Glied folgt, falls unsere Voraussetzungen über \(q\) und \(m\) erfüllt sind. Dies geschieht mit dem Satze (326) in der Form

\[\vdash \text{anz}(0) e \text{anz}(x e (\leq_{(v \delta q)}^{-1}) e \leq_{nf}))\]

und Ende des Abschnittes M.
laufenden \(q \)-Reihe, die unter den \(v \)-Begriff fallen, der von \(m \) bis \(n \) laufenden \((v \delta q) \)-Reihe angehören:

\[
\vdash \forall e \left[e \varphi v \rightarrow (e \varphi (zw_{(m,c)}) \rightarrow e \varphi (zw_{(m,n)}(v \delta q))) \right] \rightarrow \\
(x \varphi (c \varphi \leq q) \rightarrow (\forall e \left[\neg e \varphi (c \varphi (\leq q)\right])) \rightarrow \\
(\neg e \varphi (c \varphi < q) \rightarrow (funk(q) \rightarrow (x \varphi (m \varphi (v \delta q) \rightarrow \\
[\neg a \varphi (x \varphi (\leq q)\right]) = [\neg a \varphi (zw_{(m,n)}(v \delta q)))])]). (\alpha)
\]

Aus (369) folgern wir leicht den Satz

\[
\vdash x \varphi (m \varphi (v \delta q) \rightarrow (a \varphi (zw_{(m,n)}(v \delta q)) \rightarrow x \varphi (a \varphi (\leq q)))]. (\beta)
\]

Um nun auch einen Satz mit

\[
x \varphi (a \varphi (\leq q)) \rightarrow a \varphi (zw_{(m,n)}(v \delta q))
\]

tals Hinterglied zu erhalten, schreiben wir (IIa) in der Form—

\[
\vdash x \varphi (m \varphi (v \delta q)) \rightarrow (a \varphi (zw_{(m,n)}(v \delta q)) \rightarrow a \varphi (zw_{(m,n)}(v \delta q)))]. (\gamma)
\]

und wenden hierauf den Satz-

\[
\vdash (a \varphi (c \varphi \leq q) \rightarrow (\forall e \left[\neg e \varphi (c \varphi (\leq q)\right])) \rightarrow (\neg e \varphi (c \varphi \leq q) \rightarrow (funk(q) \rightarrow \\
(x \varphi (a \varphi (\leq q))) \rightarrow (x \varphi (m \varphi (v \delta q) \rightarrow a \varphi (zw_{(m,n)}(v \delta q)))))]. (\delta)
\]

an, den wir aus (407) und

\[
\vdash funk(q) \rightarrow (x \varphi (c \varphi \leq q) \rightarrow (x \varphi (a \varphi (\leq q))) \rightarrow \\
(\forall e \left[\neg e \varphi (c \varphi (\leq q)\right)] \rightarrow a \varphi (c \varphi \leq q))).
\]

ableiten. Wir beweisen (\(\delta \)) mit (243).

§ 26. Aufbau.

\[
197 \vdash a \varphi v \rightarrow (c \varphi (a \varphi \leq q) \rightarrow c \varphi (a \varphi (\leq q))
\]

\[
\times
\]

\[
\vdash a \varphi v \rightarrow (\neg c \varphi (a \varphi (\leq q)) \rightarrow \neg c \varphi (a \varphi \leq q)) (\alpha)
\]

(IIa)\(^{10}\) :: — — — — — —

\[
\vdash a \varphi v \rightarrow (\forall e \left[\neg e \varphi (c \varphi (\leq q)\right]) \rightarrow \neg e \varphi (a \varphi \leq q)) (\beta)
\]

(243) :: — — — — — —

\[
\vdash x \varphi (a \varphi \leq q) \rightarrow (funk(q) \rightarrow (x \varphi (c \varphi \leq q) \rightarrow a \varphi v \rightarrow \\
(\forall e \left[\neg e \varphi (c \varphi (\leq q))\right]) \rightarrow a \varphi (c \varphi \leq q)))]. (\gamma)
\]

(188, 191) :: — — — — — —

\[
\vdash funk(q) \rightarrow (x \varphi (c \varphi \leq q) \rightarrow (x \varphi (a \varphi (\leq q))) \rightarrow \\
(\forall e \left[\neg e \varphi (c \varphi (\leq q))\right]) \rightarrow a \varphi (c \varphi \leq q))). (417)
\]

\(^{10}\)als Oberglied zu erhalten, schreiben wir (IIa) in der Form

\(^{9}\)Textkorrektur infolge modernisierter Formelnotation!
\[(419) \cdot \]

\[\vdash \text{funk}(q) \rightarrow (a \circ (c \circ \leq_q) \rightarrow (\neg c \circ (c \circ <_q) \rightarrow (m \circ (a \circ \leq_q) \rightarrow a \circ (zw^q_{(m,c)})))) \]

\[(407, 417) :: \quad = = = = = = = =
\]
\[\vdash x \circ (c \circ \leq_q) \rightarrow (\forall e \left[\neg c \circ (e \circ (<_q)^v) \right] \rightarrow (\neg c \circ (c \circ <_q) \rightarrow (\text{funk}(q) \rightarrow (x \circ (a \circ (\leq_q)^v)) \rightarrow (x \circ (m \circ (v \circ \delta q)) \rightarrow a \circ (zw^q_{(m,c)}))))))) \]

\[(IIa) :: \quad = = = = = = = =
\]
\[\vdash \forall e \left[e \circ v \rightarrow (e \circ (zw^q_{(m,c)})) \rightarrow e \circ (zw^{(v \circ \delta q)}_{(m,n)}) \right] \rightarrow (a \circ v \rightarrow (x \circ (c \circ \leq_q) \rightarrow (\forall e \left[\neg c \circ (e \circ (<_q)^v) \right] \rightarrow (\neg c \circ (c \circ <_q) \rightarrow (\text{funk}(q) \rightarrow (x \circ (a \circ (\leq_q)^v)) \rightarrow (x \circ (m \circ (v \circ \delta q)) \rightarrow a \circ (zw^{(v \circ \delta q)}_{(m,n)}))))))))))) \]

\[(191) :: \quad = = = = = = = =
\]
\[\vdash \forall e \left[e \circ v \rightarrow (e \circ (zw^q_{(m,c)})) \rightarrow e \circ (zw^{(v \circ \delta q)}_{(m,n)}) \right] \rightarrow (x \circ (c \circ \leq_q) \rightarrow (\forall e \left[\neg c \circ (e \circ (<_q)^v) \right] \rightarrow (\neg c \circ (c \circ <_q) \rightarrow (\text{funk}(q) \rightarrow (x \circ (m \circ (v \circ \delta q)) \rightarrow (x \circ (a \circ (\leq_q)^v)) \rightarrow a \circ (zw^{(v \circ \delta q)}_{(m,n)})))))))))) \]

\[S.32
\]
\[\vdash x \circ (m \circ (v \circ \delta q)) \rightarrow (a \circ (zw^{(v \circ \delta q)}_{(m,n)})) \rightarrow x \circ (a \circ (\leq_q)^v)) \]

\[(IVa) :: \quad = = = = = = = =
\]
\[\vdash x \circ (m \circ (v \circ \delta q)) \rightarrow (x \circ (a \circ (\leq_q)^v)) \rightarrow x \circ (a \circ (\leq_q)^v)) \]

\[(22) :: \quad = = = = = = = =
\]
\[\vdash x \circ (m \circ (v \circ \delta q)) \rightarrow (x \circ (a \circ (\leq_q)^v)) \rightarrow (x \circ (a \circ (\leq_q)^v)) \]

\[(419) :: \quad = = = = = = = =
\]
\(\vdash \forall e \ [e \circ (zw^q_{(m,c)}) \rightarrow e \circ (zw^{(v \circ q)}_{(m,n)})] \rightarrow\)

\(\forall e \ [e \circ (zw^q_{(m,c)}) \rightarrow e \circ (zw^{(v \circ q)}_{(m,n)})] \rightarrow\)

\[(x \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''})))]) \rightarrow\]

\(\forall e \ [\neg c \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\)

\((- \neg \circ (e \circ x \circ \leq_{\leq_{q''}}) = [- \neg \circ (zw^{(v \circ q)}_{(m,n)})])\)

\(\vdash \forall e \ [e \circ (zw^q_{(m,c)}) \rightarrow e \circ (zw^{(v \circ q)}_{(m,n)})] \rightarrow\)

\[(x \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''})))]) \rightarrow\]

\(\forall e \ [\neg c \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\)

\[\forall e \ [\neg c \circ (e \circ x \circ \leq_{\leq_{q''}}) = [- \neg \circ (zw^{(v \circ q)}_{(m,n)})])\)

\(\vdash \forall e \ [e \circ v \rightarrow (e \circ (zw^q_{(m,c)}) \rightarrow e \circ (zw^{(v \circ q)}_{(m,n)})]) \rightarrow\)

\[(x \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\]

\(\forall e \ [\neg c \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\)

\[\forall e \ [\neg c \circ (e \circ x \circ \leq_{\leq_{q''}}) = [- \neg \circ (zw^{(v \circ q)}_{(m,n)})])\)

\[\vdash \forall e \ [e \circ v \rightarrow (e \circ (zw^q_{(m,c)}) \rightarrow e \circ (zw^{(v \circ q)}_{(m,n)})]) \rightarrow\)

\[(x \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\]

\(\forall e \ [\neg c \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\)

\[- \neg \circ (e \circ x \circ \leq_{\leq_{q''}}) = [- \neg \circ (zw^{(v \circ q)}_{(m,n)})])\)

\(\vdash \forall e \ [e \circ v \rightarrow (e \circ (zw^q_{(m,c)}) \rightarrow e \circ (zw^{(v \circ q)}_{(m,n)})]) \rightarrow\)

\[(x \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\]

\(\forall e \ [\neg c \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\)

\[\neg \forall e \ [e \circ v \rightarrow (e \circ (zw^q_{(m,c)}) \rightarrow e \circ (zw^{(v \circ q)}_{(m,n)})])\)

\(\vdash \forall e \ [e \circ v \rightarrow (e \circ (zw^q_{(m,c)}) \rightarrow e \circ (zw^{(v \circ q)}_{(m,n)})]) \rightarrow\)

\[(x \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\]

\(\forall e \ [\neg c \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\)

\[- \neg \circ (e \circ x \circ \leq_{\leq_{q''}}) = [- \neg \circ (zw^{(v \circ q)}_{(m,n)})])\)

\(\vdash \forall e \ [e \circ v \rightarrow (e \circ (zw^q_{(m,c)}) \rightarrow e \circ (zw^{(v \circ q)}_{(m,n)})]) \rightarrow\)

\[(x \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\]

\(\forall e \ [\neg c \circ (e \circ \leq_q) \rightarrow (\forall e \ [\neg c \circ (e \circ (\leq_{q''}))]) \rightarrow\)

\[- \neg \circ (e \circ x \circ \leq_{\leq_{q''}}) = [- \neg \circ (zw^{(v \circ q)}_{(m,n)})])\)
§ 27. Zerlegung.

Wir müssen aus dem letzten Satz das Vorderglied "\[\neg \text{anz}(0) \]" weg-

schaffen. Dies geschieht mit dem Satz

\[\vdash x \in (m \in (v \rightarrow q)) \rightarrow (\forall e \neg c \in (e \in (e \rightarrow q))) \rightarrow m \in (c \in (c \rightarrow q)) \rightarrow (\forall e \neg c \in (e \rightarrow q)) \rightarrow m \in (c \in (c \rightarrow q)) \rightarrow \text{anz}(0) \in (\text{anz}(x \in (\leq q)) \rightarrow \leq nf)) \]

\[(x \in (m \in (v \rightarrow q)) \rightarrow (\forall e \neg c \in (e \in (e \rightarrow q))) \rightarrow m \in (c \in (c \rightarrow q)) \rightarrow (\forall e \neg c \in (e \rightarrow q)) \rightarrow m \in (c \in (c \rightarrow q)) \rightarrow \text{anz}(0) \in (\text{anz}(x \in (\leq q)) \rightarrow \leq nf)) \]

\[(403) ^{\#11} :: - - - - - - - - \]

\[\vdash m \in (c \in (c \rightarrow q)) \rightarrow (x \in (m \in (v \rightarrow q)) \rightarrow (\forall e \neg c \in (e \in (e \rightarrow q))) \rightarrow m \in (c \in (c \rightarrow q)) \rightarrow (\forall e \neg c \in (e \in (e \rightarrow q))) \rightarrow m \in (c \in (c \rightarrow q)) \rightarrow \text{anz}(0) \in (\text{anz}(x \in (\leq q)) \rightarrow \leq nf)) \]

\[(421) \]

§ 28. Aufbau.

\[\vdash \forall c \in (c \in (\leq q)) \rightarrow \neg c \in (m \in (\leq q)) \]

\[\times \]

\[\vdash c \in (m \in (\leq q)) \rightarrow \neg c \in (m \in (\leq q)) \]

\[(197) :: - - - - - - - - \]

\[^{\#11}\text{Wir müssen aus dem letzten Satz das Unterglied}\]

\[^{\#12}\text{Textkorrektur infolge modernisierter Formelnotation!}\]
⊢ \text{me} \rightarrow (c \text{me} < q) \rightarrow \neg \forall e \left[\neg c \text{e}(<q) \right] \quad (\beta)

\times

⊢ \text{me} \rightarrow (\forall e \left[\neg c \text{e}(<q) \right] \rightarrow \neg c \text{me} (m \text{e} < q)) \quad (\gamma)

(243) : \hspace{1cm} - \hspace{1cm} - \hspace{1cm} - \hspace{1cm} - \hspace{1cm} -

⊢ x \text{e} (m \text{e} \leq q) \rightarrow (\text{funk} (q) \rightarrow (x \text{e} (c \text{e} \leq q) \rightarrow (m \text{e} v \rightarrow

(\forall e \left[\neg c \text{e}(c \text{e} \leq q) \right] \rightarrow m \text{e} (c \text{e} \leq q)))))) \quad (\delta)

(401) :: \hspace{1cm} - \hspace{1cm} - \hspace{1cm} - \hspace{1cm} - \hspace{1cm} -

⊢ x \text{e} (m \text{e} (v \dot{q} q)) \rightarrow (\text{funk} (q) \rightarrow (x \text{e} (c \text{e} \leq q) \rightarrow (m \text{e} v \rightarrow

(\forall e \left[\neg c \text{e}(c \text{e} \leq q) \right] \rightarrow m \text{e} (c \text{e} \leq q)))))) \quad (\varepsilon)

(421) : \hspace{1cm} - \hspace{1cm} - \hspace{1cm} - \hspace{1cm} - \hspace{1cm} -

⊢ m \text{e} v \rightarrow (x \text{e} (c \text{e} \leq q) \rightarrow (\forall e \left[\neg c \text{e}(c \text{e} \leq q) \right] \rightarrow

(\neg c \text{e} (c \text{e} < q) \rightarrow (\text{funk} (q) \rightarrow (x \text{e} (m \text{e} (v \dot{q} q)) \rightarrow

\text{anz} (0) \text{e} [\text{anz} (x \text{e} (\leq q)^{-1}) \text{e} \leq \text{nf}])])]) \quad (\zeta)

(402) :: \hspace{1cm} - \hspace{1cm} - \hspace{1cm} - \hspace{1cm} - \hspace{1cm} -

⊢ x \text{e} (c \text{e} \leq q) \rightarrow (\forall e \left[\neg c \text{e}(c \text{e} \leq q) \right] \rightarrow

(\neg c \text{e} (c \text{e} < q) \rightarrow (\text{funk} (q) \rightarrow (x \text{e} (m \text{e} (v \dot{q} q)) \rightarrow

\text{anz} (0) \text{e} [\text{anz} (x \text{e} (\leq q)^{-1}) \text{e} \leq \text{nf}]])]) \quad (422)

\times

⊢ \neg \text{anz} (0) \text{e} [\text{anz} (x \text{e} (\leq q)^{-1}) \text{e} \leq \text{nf}] \rightarrow

(\neg c \text{e} (c \text{e} < q) \rightarrow (\text{funk} (q) \rightarrow (x \text{e} (m \text{e} (v \dot{q} q)) \rightarrow

(x \text{e} (c \text{e} \leq q) \rightarrow \forall e \left[\neg c \text{e}(c \text{e} \leq q) \right])])]) \quad (\alpha)

(IIa) :: \hspace{1cm} - \hspace{1cm} - \hspace{1cm} - \hspace{1cm} - \hspace{1cm} -
\[
\vdash \text{anz}(0) \varnothing [\text{anz}(x \varnothing (\leq q)|')^{-1} \varnothing \leq_{\text{nf}}] \rightarrow \\
(\forall i [\neg i \varnothing (i \varnothing < q)] \rightarrow (\text{funk}(q) \rightarrow (x \varnothing (m \varnothing (v \delta q)) \rightarrow \\
(x \varnothing (e \varnothing \leq q) \rightarrow \neg \forall e [\neg e \varnothing (e \varnothing (< q)|')])))) \\
\beta
\]

\[\sim \]

\[
\vdash \text{anz}(0) \varnothing [\text{anz}(x \varnothing (\leq q)|')^{-1} \varnothing \leq_{\text{nf}}] \rightarrow \\
(\forall i [\neg i \varnothing (i \varnothing < q)] \rightarrow (\text{funk}(q) \rightarrow (x \varnothing (m \varnothing (v \delta q)) \rightarrow \\
\forall a [x \varnothing (a \varnothing \leq q) \rightarrow \neg \forall e [\neg a \varnothing (e \varnothing (< q)|')]]))) \\
\gamma
\]

(416) : - - - - - - - -

S.35

\[
\vdash \text{anz}(0) \varnothing [\text{anz}(x \varnothing (\leq q)|')^{-1} \varnothing \leq_{\text{nf}}] \rightarrow (\forall i [\neg i \varnothing (i \varnothing < q)] \rightarrow \\
(\text{funk}(q) \rightarrow (x \varnothing (m \varnothing (v \delta q)) \rightarrow \infty = \text{anz}(x \varnothing (\leq q)|')^{-1})) \\
\delta
\]

\[
\times \\
\vdash \text{anz}(0) \varnothing [\text{anz}(x \varnothing (\leq q)|')^{-1} \varnothing \leq_{\text{nf}}] \rightarrow (\forall i [\neg i \varnothing (i \varnothing < q)] \rightarrow \\
(\text{funk}(q) \rightarrow (\neg \infty = \text{anz}(x \varnothing (\leq q)|')^{-1} \rightarrow \neg x \varnothing (m \varnothing (v \delta q)))) \\
\epsilon
\]

\[\sim \]

\[
\vdash \text{anz}(0) \varnothing [\text{anz}(x \varnothing (\leq q)|')^{-1} \varnothing \leq_{\text{nf}}] \rightarrow (\forall i [\neg i \varnothing (i \varnothing < q)] \rightarrow \\
(\text{funk}(q) \rightarrow (\neg \infty = \text{anz}(x \varnothing (\leq q)|')^{-1} \rightarrow \forall a [\neg x \varnothing (a \varnothing (v \delta q))])) \\
\zeta
\]

(359) : - - - - - - - -

\[
\vdash \text{anz}(0) \varnothing [\text{anz}(x \varnothing (\leq q)|')^{-1} \varnothing \leq_{\text{nf}}] \rightarrow (\forall i [\neg i \varnothing (i \varnothing < q)] \rightarrow \\
(\text{funk}(q) \rightarrow (\neg \infty = \text{anz}(x \varnothing (\leq q)|')^{-1} \rightarrow \forall e [\neg x \varnothing (e \varnothing (\leq q)|')])) \\
\eta
\]

\[
\times \\
\vdash \forall e [\neg x \varnothing (e \varnothing (\leq q)|')] \rightarrow (\forall i [\neg i \varnothing (i \varnothing < q)] \rightarrow \text{funk}(q) \rightarrow \\
(\neg \infty = \text{anz}(x \varnothing (\leq q)|')^{-1} \rightarrow \text{anz}(0) \varnothing [\text{anz}(x \varnothing (\leq q)|')^{-1} \varnothing \leq_{\text{nf}}])) \\
(423)
\]

Ha \[\forall e [\neg x \varnothing (e \varnothing (\leq q)|')] \rightarrow \neg x \varnothing (e \varnothing (\leq q)|')

(22) : - - - - - - - -
\[\forall x \in (e \circ (\leq_\sigma^\nu)^{\nu-1})\rightarrow \neg (e \circ (\leq_\sigma^\nu)^{\nu-1})(x)\]

\[\forall x \in (e \circ (\leq_\sigma^\nu)^{\nu-1})\rightarrow \forall a \in (e \circ (\leq_\sigma^\nu)^{\nu-1})\]

(97): \[\forall x \in (e \circ (\leq_\sigma^\nu)^{\nu-1})\rightarrow \neg (e \circ (\leq_\sigma^\nu)^{\nu-1})\]

\[\forall x \in (e \circ (\leq_\sigma^\nu)^{\nu-1})\rightarrow \text{anz}(x) = \text{anz}(0)\]

(139): \[\forall x \in (e \circ (\leq_\sigma^\nu)^{\nu-1})\rightarrow \text{anz}(0) \sigma \text{anz}(x) \leq_{\text{nf}}\]

(423): \[\forall x \in (e \circ (\leq_\sigma^\nu)^{\nu-1})\rightarrow (\text{anz}(0) \sigma \text{anz}(x) \leq_{\text{nf}})\]

\[(IIIa): \]

\[\text{anz}(v) = \text{anz}(x) \leq_{\text{nf}}\rightarrow (\forall i \in (i \circ (i \leq_\sigma^\nu)) \rightarrow (\text{anz}(v) \leq_{\text{nf}}))\]

\[\text{anz}(v) = \text{anz}(x) \leq_{\text{nf}}\rightarrow (\forall i \in (i \circ (i \leq_\sigma^\nu)) \rightarrow (\text{anz}(v) \leq_{\text{nf}}))\]

(425): \[\text{anz}(v) = \text{anz}(x) \leq_{\text{nf}}\rightarrow (\forall i \in (i \circ (i \leq_\sigma^\nu)) \rightarrow (\text{anz}(v) \leq_{\text{nf}}))\]

\[(IIa): \]

S.36

\[\forall (\text{anz}(v) = \text{anz}(x) \leq_{\text{nf}})\rightarrow (\forall i \in (i \circ (i \leq_\sigma^\nu)) \rightarrow (\text{anz}(v) \leq_{\text{nf}}))\]

\[\text{anz}(v) = \text{anz}(x) \leq_{\text{nf}}\rightarrow (\forall i \in (i \circ (i \leq_\sigma^\nu)) \rightarrow (\text{anz}(v) \leq_{\text{nf}}))\]

\[(\forall i \in (i \circ (i \leq_\sigma^\nu)) \rightarrow (\text{anz}(v) \leq_{\text{nf}}))\]

(206): \[\forall (\text{anz}(v) = \text{anz}(x) \leq_{\text{nf}})\rightarrow (\forall i \in (i \circ (i \leq_\sigma^\nu)) \rightarrow (\text{anz}(v) \leq_{\text{nf}}))\]

\[\text{anz}(v) = \text{anz}(x) \leq_{\text{nf}}\rightarrow (\forall i \in (i \circ (i \leq_\sigma^\nu)) \rightarrow (\text{anz}(v) \leq_{\text{nf}}))\]

\[\text{anz}(v) = \text{anz}(x) \leq_{\text{nf}}\rightarrow (\forall i \in (i \circ (i \leq_\sigma^\nu)) \rightarrow (\text{anz}(v) \leq_{\text{nf}}))\]
191 ⊢ x ∈ (c ⪯ (≤ q))^v → c ⪯ v

(IVa) :

⊢ (c ⪯ v → x ∈ (c ⪯ (≤ q))^v) →
(¬ c ⪯ v) = (¬ x ∈ (c ⪯ (≤ q))^v))

(22) :

⊢ (c ⪯ v → x ∈ (c ⪯ (≤ q))^v) →
(¬ c ⪯ v) = (¬ c ⪯ (x ⪯ (≤ q))^v))

23 ⊢ c ⪯ (x ⪯ q) → x ∈ (c ⪯ q)

(IIIa) :

⊢ ext ε (¬ ε ⪯ u) = x ∈ q → (c ⪯ ext ε (¬ ε ⪯ u) → x ∈ (c ⪯ q))

(77) ::

⊢ ext ε (¬ ε ⪯ u) = x ∈ q → (c ⪯ u → x ∈ (c ⪯ q))

(197) ::

⊢ c ⪯ v → (ext ε (¬ ε ⪯ u) = x ⪯ q →
(c ⪯ u → x ⪯ (c ⪯ (≤ q))^v)))

(IIa) ::

⊢ ext ε (¬ ε ⪯ u) = x ⪯ q → (∀ a ⪯ v → a ⪯ u) →
(c ⪯ v → x ∈ (c ⪯ q)))

(β) :

⊢ ext ε (¬ ε ⪯ u) = x ⪯ q → (∀ a ⪯ v → a ⪯ u) →
(¬ c ⪯ v) = (¬ c ⪯ (x ⪯ (≤ q)^v)))

S.37

(96) ::

⊢ ext ε (¬ ε ⪯ u) = x ⪯ q → (∀ a ⪯ v → a ⪯ u) →
∀ a [¬ a ⪯ v] = (¬ a ⪯ (x ⪯ (≤ q)^v))

(11) :

⊢ ext ε (¬ ε ⪯ u) = x ⪯ q → (∀ a ⪯ v → a ⪯ u) →
anz (v) = anz (x ⪯ (≤ q)^v)

(425) ::

⊢ ext ε (¬ ε ⪯ u) = x ⪯ q → (∀ a ⪯ v → a ⪯ u) → (funk (q) →
(∀ i ⪯ v (i ⪯ q) → (¬ ∞ = anz (v) → anz (0) ⪯ (anz (v) ⪯ (≤ q^v)))))

(κ)
⊢ ¬ anz(0) ∃(anz(v) ≤nf) → (∀a ∃ v → a ∃ u) → (¬ ∞ = anz(v) →
(funk(q) → (∀i [¬ i ∃ (i ∃ <q)] → ¬ ext e (¬ e ∃ u = x ∃ ≤q−1))))
(λ
)

⊢ ¬ anz(0) ∃(anz(v) ≤nf) → (∀a ∃ v → a ∃ u) → (¬ ∞ = anz(v) →
∀q [funk(q) → (∀i [¬ i ∃ (i ∃ <q)] → ∀a [¬ ext e (¬ e ∃ u = a ∃ ≤q−1)]))]
(μ
)
(426) :

⊢ ¬ anz(0) ∃ (anz(v) ∃ ≤nf) → (∀a ∃ v → a ∃ u) →
(¬ ∞ = anz(v) → ¬ ∞ = anz(u))
(427)

×

⊢ ∀a [a ∃ v → a ∃ u] →
(∞ = anz(u) → (¬ ∞ = anz(v) → anz(0) ∃ (anz(v) ∃ ≤nf)))
(428)

N. Beweis des Satzes

, ⊢ anz(0) ∃ (anz(u) ∃ ≤nf) → (∀a ∃ v → a ∃ u) → anz(0) ∃ (anz(v) ∃ ≤nf))

§ 29. Zerlegung.

Wir beweisen nun den Satz, dass einem Begriffe eine endliche Anzahl zukommt, wenn
einem ihm übergeordneten Begriffe eine endliche Anzahl zukommt.

Es sei der u-Begriff der übergeordnete, der v-Begriff der untergeordnete. Wir haben am
Schlusse des I. Bandes gesehen, dass sich die unter den u-Begriff fallenden Gegenstände
in eine Reihe ordnen lassen, die von einem bestimmten Gegenstande bis zu einem bestimm-
ten Gegenstande läuft, wenn die Anzahl des u-Begriffes endlich ist. Wir setzen daher zu-
ächst statt des u-Begriffes die von x bis c laufende q-Reihe und fassen den Fall ins Auge,
dass überhaupt Gegenstände unter den v-Begriff fallen. Dann sei in unserer Reihe
m das
Glied, das zuerst, und n das Glied, das zuletzt unter den v-Begriff fällt. Wir benutzen nun
unsern Satz (422), aus dem wir zunächst, m mit (357) wegschaffen. m→Wir ersetzen die
Vorderglieder—■12 #13

, ¬ x ∃ (c ∃ ≤q))

, ¬ x ∃ (a ∃ ≤q))

und

, ∀e [¬ c ∃ (e ∃ (<q)v))])

12Wir ersetzen die Unterglieder

#13Textkorrektur infolge modernisierter Formelnotation!
durch die Unterglieder

und

\[\forall a \ [a \sigma v \rightarrow a \sigma (zw^q_{(x,c)})] \]

So erhalten wir den Satz

\[\vdash \forall a \ [a \sigma v \rightarrow a \sigma (zw^q_{(x,c)})] \rightarrow (a \sigma v \rightarrow anz(0) \sigma [anz (x \sigma (\leq q)v) \sigma \leq_{\text{mf}}]) \]

Für \(\text{anz} (x \sigma (\leq q)v)^{-1}\) ist dann \(\text{anz} (v)^{-1}\) einzuführen mit dem Satz

\[\forall a \ [a \sigma v \rightarrow a \sigma (zw^q_{(x,c)})] \rightarrow anz (v) = anz (x \sigma (\leq q)v)^{-1} \]

der mit (IVa) aus (191) und dem Satz

\[\forall a \ [a \sigma v \rightarrow a \sigma (zw^q_{(x,c)})] \rightarrow (a \sigma v \rightarrow x \sigma (a \sigma (\leq q)v)) \]

folgt.

§ 30. Aufbau.

296 \[\vdash a \sigma (c \sigma \leq q) \rightarrow (\text{funk} (q) \rightarrow (a \sigma (a \sigma <q) \rightarrow c \sigma (c \sigma <q)) \]

\[\times\]

\[\vdash a \sigma (c \sigma \leq q) \rightarrow (\text{funk} (q) \rightarrow (\neg c \sigma (c \sigma <q) \rightarrow \neg a \sigma (a \sigma <q))) \]

(429)

269 \[\vdash a \sigma (zw^q_{(x,c)}) \rightarrow a \sigma (c \sigma \leq q) \]

(276) :

\[\vdash a \sigma (zw^q_{(x,c)}) \rightarrow (c \sigma (a \sigma <q) \rightarrow c \sigma (c \sigma <q)) \]

(\(\alpha\))

(272) :

\[\vdash c \sigma (a \sigma <q) \rightarrow (a \sigma (zw^q_{(x,c)}) \rightarrow \neg a \sigma (zw^q_{(x,c)}) \]

(\(Ig\)) :

(430)

(188) :

\[\vdash c \sigma (a \sigma (\leq q)v) \rightarrow \neg a \sigma (zw^q_{(x,c)}) \]

(\(\alpha\))

\[\times\]

\[\vdash a \sigma (zw^q_{(x,c)}) \rightarrow \neg c \sigma (a \sigma (\leq q)v) \]

(\(\beta\))

\[\text{IIa} ::\]

\[\times\]

\[\vdash a \sigma (zw^q_{(x,c)}) \rightarrow \neg c \sigma (a \sigma (\leq q)v) \]

(\(\beta\))

\[\text{IIa} ::\]

\[\times\]

\[\vdash a \sigma (zw^q_{(x,c)}) \rightarrow \neg c \sigma (a \sigma (\leq q)v) \]

(\(\beta\))

\[\text{IIa} ::\]

\[\times\]
\[\vdash \forall a \circ v \rightarrow a \circ (zw^q(x,a)) \rightarrow (a \circ v \rightarrow \neg c \circ (a \circ (\leq q))) \]

(192) : \quad \vdash \forall a \circ v \rightarrow a \circ (zw^q(x,a)) \rightarrow \neg c \circ (a \circ (\leq q)) \quad (431)

\[\bigwedge \]

\[\vdash \forall a \circ v \rightarrow a \circ (zw^q(x,a)) \rightarrow \forall a [\neg c \circ (a \circ (\leq q))] \quad (432) \]

\[\]
\[\vdash x \in (c \leq q) \rightarrow (\forall e \in c \leq q) \rightarrow \\
(\forall e \in (c \leq q)^{-1}) \in v \leq nf \rightarrow (a \in (c \leq q) \rightarrow (funk(q) \rightarrow \\
(\forall e \in (c \leq q) \rightarrow (a \in (c \leq q)))))) \]

(271, 269) :: = = = = = = = =

S.40

\[\vdash x \in (c \leq q) \rightarrow (\forall e \in c \leq q) \rightarrow \\
(\forall e \in (c \leq q)^{-1}) \in v \leq nf \rightarrow (a \in (c \leq q) \rightarrow (funk(q) \rightarrow \\
(a \in (c \leq q) \rightarrow (a \in (c \leq q)))))) \]

(265, 323) :: = = = = = = = =

\[\vdash \forall e \in c \in (c \leq q) \rightarrow \\
(\forall e \in (c \leq q)^{-1}) \in v \leq nf \rightarrow \\
(a \in (c \leq q) \rightarrow (a \in (c \leq q))) \]

\[\times \\
\vdash \forall e \in c \in (c \leq q) \rightarrow (a \in (a \leq q) \rightarrow (a \in (zw^q(x,c))) \rightarrow \\
(a \in v \rightarrow anz(0) \in (anz(x \leq q)^{-1}) \in v \leq nf))) \]

(432, 270) :: = = = = = = = =

\[\vdash \forall a \in a \in (a \in (zw^q(x,c))) \rightarrow (a \in (zw^q(x,c))) \rightarrow \\
(a \in v \rightarrow anz(0) \in (anz(x \leq q)^{-1}) \in v \leq nf))) \]

(IIa) :: = = = = = = = =

\[\vdash \forall a \in a \in (zw^q(x,c)) \rightarrow \\
(a \in v \rightarrow anz(0) \in (anz(x \leq q)^{-1}) \in v \leq nf))) \]

(IIIa) :: = = = = = = = =

\[\vdash anz(v) = anz(x \leq q)^{-1} \rightarrow (\forall a \in a \in (vw^q(x,c))) \rightarrow \\
(a \in v \rightarrow anz(0) \in (anz(v) \in v \leq nf))) \]
$\vdash a \circ (zw_q^{q(x,c)}) \rightarrow x \circ (a \circ \leq_q)
$

(197) :

$\vdash a \circ (zw_q^{q(x,c)}) \rightarrow (a \circ v \rightarrow x \circ (a \circ \leq_q))$

(α)

(Ha) :

$\vdash \forall a [a \circ v \rightarrow a \circ (zw_q^{q(x,c)})] \rightarrow (a \circ v \rightarrow x \circ (a \circ \leq_q))$

(β)

$\vdash x \circ (a \circ \leq_q^{q(x,c)}) \rightarrow a \circ v$

(IV a) :

$\vdash (a \circ v \rightarrow x \circ (a \circ \leq_q^{q})) \rightarrow$

$\neg a \circ v \equiv (\neg x \circ (a \circ \leq_q^{q}))$

(γ)

$\vdash \forall a [a \circ v \rightarrow a \circ (zw_q^{q(x,c)})] \rightarrow (\neg a \circ v) \equiv (\neg a \circ (x \circ \leq_q^{q}(-1)))$

(δ)

$\vdash \forall a [a \circ v \rightarrow a \circ (zw_q^{q(x,c)})] \rightarrow$

$\forall a [(\neg a \circ v) \equiv (\neg a \circ (x \circ \leq_q^{q})^{-1})]$

(ζ)

(22) :

$\vdash \forall a [a \circ v \rightarrow a \circ (zw_q^{q(x,c)})] \rightarrow (\neg a \circ v) \equiv (\neg a \circ (x \circ \leq_q^{q})^{-1})$

(ϵ)

§ 31. Zerlegung.

$\neg a \circ u \vdash \forall a [a \circ v \rightarrow a \circ u]$

und

$\neg a \circ u \vdash (\neg a \circ u) = zw_q^{q(x,c)}$

Dazu brauchen wir den Satz

$\neg a \circ u \vdash \forall a [a \circ v \rightarrow a \circ u] \rightarrow (a \circ v \rightarrow a \circ (zw_q^{q(x,c)}))$

(α)

14Das untere Unterglied in (435) ersetzen wir durch

15Textkorrektur infolge modernisierter Formelnotation!
der aus (44) folgt.

Es sind dann , , und ,wegzuschaffen. Da (345) hierzu nicht ganz geeignet ist, leiten wir aus (345) den Satz

\[\vdash \text{anz} (0) \circ \text{anz} (u) \leq_{nf} \rightarrow (\forall a \to \neg a \circ u) \rightarrow \neg \forall \exists \forall q \left[\neg \text{ext} (\neg e \circ u) = zw^q_{(b,a)} \right] \]

ab. Um endlich noch ,wegzuschaffen, benutzen wir den aus (97) folgenden Satz

\[\vdash \forall a \to \text{anz} (0) \circ (\text{anz} (v) \leq_{nf}) \]

§ 32. Aufbau.

44 \[\vdash \text{ext} (\neg e \circ u) = zw^q_{(x,c)} \rightarrow (a \circ u \rightarrow a \circ (zw^q_{(x,c)})) \]

\[(IIa) \quad \vdash \text{ext} (\neg e \circ u) = zw^q_{(x,c)} \rightarrow (\forall a \circ v \rightarrow a \circ u) \rightarrow (a \circ v \rightarrow a \circ (zw^q_{(x,c)})) \]

\[(345) : \quad \vdash \text{ext} (\neg e \circ u) = zw^q_{(x,c)} \rightarrow (\forall a \circ v \rightarrow a \circ u) \rightarrow (a \circ v \rightarrow \text{anz} (0) \circ (\text{anz} (v) \leq_{nf})) \]

\[\times \]

S.42

\[\vdash \neg \text{anz} (0) \circ (\text{anz} (v) \leq_{nf}) \rightarrow (\forall a \circ v \rightarrow a \circ u) \rightarrow (a \circ v \rightarrow \neg \text{ext} (\neg e \circ u) = zw^q_{(x,c)}) \]

\[\neg \vdash \text{anz} (0) \circ (\text{anz} (v) \leq_{nf}) \rightarrow (\forall a \circ v \rightarrow a \circ u) \rightarrow (a \circ v \rightarrow \forall \exists \forall q \left[\neg \text{ext} (\neg e \circ u) = zw^q_{(b,a)} \right] \]

\[\neg \forall \exists \forall q \left[\neg \text{ext} (\neg e \circ u) = zw^q_{(b,a)} \]

\[\text{anz} (0) \circ (n \circ \leq_{nf}) \rightarrow (\forall a \circ v \rightarrow a \circ u) \rightarrow (\neg \forall \exists \forall q \left[\neg \text{ext} (\neg e \circ u) = zw^q_{(b,a)} \]

\[\neg \forall \exists \forall q \left[\neg \text{ext} (\neg e \circ u) = zw^q_{(b,a)} \rightarrow (\neg a \circ v) \right] \]

\[(IIIf) : \quad \vdash \text{anz} (0) \circ (n \circ \leq_{nf}) \rightarrow (\text{anz} (zw^q_{(anz (1), n)}) \rightarrow n) \]

\[\text{anz} (0) \circ (n \circ \leq_{nf}) \rightarrow (\text{anz} (zw^q_{(anz (1), n)}) \rightarrow (\neg a \circ v) \rightarrow n) \]

\[(437) \]

\[(438) \]
IIa ⊢ ∀a [a ∃ v → a ∃ u] → (a ∃ v → a ∃ u)

×

⊢ ∀a [a ∃ v → a ∃ u] → (¬ a ∃ u → ¬ a ∃ v) (α)

(IIa) :: — — — — — — —

⊢ ∀a [a ∃ v → a ∃ u] → (∀a [¬ a ∃ u] → ¬ a ∃ v) (439)

IIa ⊢ ∀q [¬ ext e (¬ ∃ u) = zw_q^{(m,n)}] → ¬ ext e (¬ ∃ u) = zw_q^{(m,n)}

(IIa) :: — — — — — — —

⊢ ∀a ∀q [¬ ext e (¬ ∃ u) = zw_q^{(m,a)}] → ¬ ext e (¬ ∃ u) = zw_q^{(m,n)} (α)

(IIa) :: — — — — — — —

⊢ ∀a ∀q [¬ ext e (¬ ∃ u) = zw_q^{(a)}] → ¬ ext e (¬ ∃ u) = zw_q^{(m,n)} (β)

(IIIb) :: — — — — — — —

⊢ ∀a ∀q [¬ ext e (¬ ∃ u) = zw_q^{(a)}] → (ext e (¬ ∃ u) = zw_A) →

(A = (m,n) → (¬ n ∃ (n ∃ <q) →

(m ∃ (u ∃ ≤q) → ¬ a ∃ (n ∃ ≤q)))) (δ)

(266) :: — — — — — — —

⊢ ∀a ∀q [¬ ext e (¬ ∃ u) = zw_q^{(a)}] →

(ext e (¬ ∃ u) = zw_A) → ¬ a ∃ (zw_A) (ζ)

(46) :: — — — — — — —

⊢ ∀a ∀q [¬ ext e (¬ ∃ u) = zw_q^{(a)}] →

(ext e (¬ ∃ u) = zw_A) → ¬ a ∃ u (η)

(θ)
\[\vdash \forall d \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \right) = zw^q_{(d,a)} \rightarrow \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \right] \]

\[\vdash \forall d \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \rightarrow \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \right] \right] \]

\[\vdash \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall d \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \right] \]

\[\vdash \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall d \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \right] \]

\[\vdash \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall d \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \right] \]

\[\vdash \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall d \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \right] \]

\[\vdash \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall d \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \right] \]

\[\vdash \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall d \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \right] \]

\[\vdash \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall d \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \right] \]

\[\vdash \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall d \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \right] \]

\[\vdash \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall a \left[\neg \varepsilon \, \varepsilon \, u \right] \rightarrow \neg \forall d \forall a \forall q \left[\neg \text{ext} \, \varepsilon \left(- \varepsilon \, \varepsilon \, u \right) = zw^q_{(d,a)} \right] \]
Gegenstände in der

aussetzung machen, dass ein Gegenstand, der nicht unter den

Begriff, und wenn ihre Umkehrung diesen in jenen abbildet. Wir beweisen danach die Sätze

Beziehung die verlangten Eigenschaften hat, wenn die

gelten.

Gedanke des Satzes unserer Hauptüberschrift am leichtesten zu erkennen, und darum mag er
gentlich vorwegnimmt und obwohl das Wort “Summe” hier anders gebraucht ist, als wie wir
angeführt sein, obwohl der bestimmte Artikel beim Subject die Aussage der Bestimmthei-

te mässiger sein. Wir beweisen zunächst den Satz der Nebenüberschrift, der etwas mehr besagt,
aus (49) abzuleiten, zeigen wir, dass die

Zerlegung.

„Die Summe von zwei Anzahlen ist durch diese bestimmt“, in diesem Ausdrucke ist der
Gedanke des Satzes unserer Hauptüberschrift am leichtesten zu erkennen, und darum mag er
gentlich vorwegnimmt und obwohl das Wort “Summe” hier anders gebraucht ist, als wie wir
angeführt sein, obwohl der bestimmte Artikel beim Subject die Aussage der Bestimmthei-

te mässiger sein. Wir beweisen zunächst den Satz der Nebenüberschrift, der etwas mehr besagt,
aus (49) abzuleiten, zeigen wir, dass die

Zerlegung.

„Die Summe von zwei Anzahlen ist durch diese bestimmt“, in diesem Ausdrucke ist der
Gedanke des Satzes unserer Hauptüberschrift am leichtesten zu erkennen, und darum mag er
gentlich vorwegnimmt und obwohl das Wort “Summe” hier anders gebraucht ist, als wie wir
angeführt sein, obwohl der bestimmte Artikel beim Subject die Aussage der Bestimmthei-

te mässiger sein. Wir beweisen zunächst den Satz der Nebenüberschrift, der etwas mehr besagt,
aus (49) abzuleiten, zeigen wir, dass die

Zerlegung.

„Die Summe von zwei Anzahlen ist durch diese bestimmt“, in diesem Ausdrucke ist der
Gedanke des Satzes unserer Hauptüberschrift am leichtesten zu erkennen, und darum mag er
gentlich vorwegnimmt und obwohl das Wort “Summe” hier anders gebraucht ist, als wie wir
angeführt sein, obwohl der bestimmte Artikel beim Subject die Aussage der Bestimmthei-

te mässiger sein. Wir beweisen zunächst den Satz der Nebenüberschrift, der etwas mehr besagt,
aus (49) abzuleiten, zeigen wir, dass die

Zerlegung.

„Die Summe von zwei Anzahlen ist durch diese bestimmt“, in diesem Ausdrucke ist der
Gedanke des Satzes unserer Hauptüberschrift am leichtesten zu erkennen, und darum mag er
gentlich vorwegnimmt und obwohl das Wort “Summe” hier anders gebraucht ist, als wie wir
angeführt sein, obwohl der bestimmte Artikel beim Subject die Aussage der Bestimmthei-

te mässiger sein. Wir beweisen zunächst den Satz der Nebenüberschrift, der etwas mehr besagt,
aus (49) abzuleiten, zeigen wir, dass die

Zerlegung.

„Die Summe von zwei Anzahlen ist durch diese bestimmt“, in diesem Ausdrucke ist der
Gedanke des Satzes unserer Hauptüberschrift am leichtesten zu erkennen, und darum mag er
gentlich vorwegnimmt und obwohl das Wort “Summe” hier anders gebraucht ist, als wie wir
angeführt sein, obwohl der bestimmte Artikel beim Subject die Aussage der Bestimmthei-

te mässiger sein. Wir beweisen zunächst den Satz der Nebenüberschrift, der etwas mehr besagt,
aus (49) abzuleiten, zeigen wir, dass die

Zerlegung.

„Die Summe von zwei Anzahlen ist durch diese bestimmt“, in diesem Ausdrucke ist der
Gedanke des Satzes unserer Hauptüberschrift am leichtesten zu erkennen, und darum mag er
gentlich vorwegnimmt und obwohl das Wort “Summe” hier anders gebraucht ist, als wie wir
angeführt sein, obwohl der bestimmte Artikel beim Subject die Aussage der Bestimmthei-

te mässiger sein. Wir beweisen zunächst den Satz der Nebenüberschrift, der etwas mehr besagt,
aus (49) abzuleiten, zeigen wir, dass die

Zerlegung.
Um (α) abzuleiten, brauchen wir nach (11) den Satz

\[\vdash \forall a \left[d \circ (a \circ (q^{-1} | z^{-1})) \rightarrow \neg \ a \circ u \rightarrow \neg \ d \circ z \right] \]

und dazu den Satz

\[\vdash \forall a \left[d \circ (a \circ (q^{-1} | z^{-1})) \rightarrow \neg \ a \circ u \rightarrow (d \circ z \rightarrow (d \circ (a \circ q) \rightarrow \neg \ a \circ u)) \right] \]

der aus (197) folgt.

§ 34. Aufbau.

22 \[\vdash d \circ (a \circ q) \rightarrow a \circ (d \circ q^{-1}) \]

(197) : \[\vdash (d \circ z) \rightarrow (d \circ (a \circ q) \rightarrow a \circ (d \circ q^{-1} | z)) \] (α)

(22) : \[\vdash (d \circ z) \rightarrow (d \circ (a \circ q) \rightarrow (d \circ (a \circ q^{-1} | z^{-1}))) \] (444)

(11a) : \[\vdash \forall a \left[d \circ (a \circ (q^{-1} | z^{-1})) \rightarrow \neg \ a \circ u \rightarrow (d \circ z \rightarrow (d \circ (a \circ q) \rightarrow \neg \ a \circ u)) \right] \] (α)

\[\neg \]

\[\vdash \forall a \left[d \circ (a \circ (q^{-1} | z^{-1})) \rightarrow \neg \ a \circ u \rightarrow (d \circ z \rightarrow \forall a \left[d \circ (a \circ q) \rightarrow \neg \ a \circ u \right]) \] (β)

\[\times \]

\[\vdash \forall a \left[d \circ (a \circ (q^{-1} | z^{-1})) \rightarrow \neg \ a \circ u \rightarrow (\neg \forall a \left[d \circ (a \circ q) \rightarrow \neg \ a \circ u \rightarrow \neg \ d \circ z \right]) \right] \] (γ)

(8) : \[\vdash z \circ (u \circ q) \rightarrow (\forall a \left[d \circ (a \circ (q^{-1} | z^{-1})) \rightarrow \neg \ a \circ u \rightarrow \neg \ d \circ z \right]) \] (δ)

\[\neg \]

\[\vdash z \circ (u \circ q) \rightarrow \forall a \left[d \circ (a \circ (q^{-1} | z^{-1})) \rightarrow \neg \ a \circ u \rightarrow \neg \ d \circ z \right] \] (ε)

(11) : \[\vdash \text{funk} ((q^{-1} | z^{-1})) \rightarrow (z \circ (u \circ q : \rightarrow) \rightarrow z \circ (u \circ (q^{-1} | z^{-1}) : \rightarrow)) \] (445)
§ 35. Zerlegung.

Um den Satz (β) des § 33 zu beweisen, bedürfen wir des Satzes

\[\vdash u \circ (z \circ (q - 1) : \Rightarrow) \rightarrow \forall a \left[d \circ (a \circ (q - 1) : \Rightarrow) \rightarrow \neg d \circ u \right] \]

(α)
der wieder auf

\[\forall a \left[d \circ (a \circ (q^{-1} \mid z)^{-1})^{-1} \rightarrow \neg a \circ z \rightarrow (d \circ (a \circ q^{-1})^{-1} \rightarrow \neg a \circ z) \right] \]

zurückzuführen ist.

§ 36. Aufbau.

26 \[\vdash d \circ (a \circ q^{-1} \mid z) \rightarrow d \circ (a \circ ((q^{-1} \mid z)^{-1})^{-1}) \]

(197): \[\neg a \circ z \rightarrow (d \circ (a \circ q^{-1}) \rightarrow d \circ (a \circ ((q^{-1} \mid z)^{-1})^{-1})) \]

\[\times \]

\[\neg d \circ (a \circ ((q^{-1} \mid z)^{-1})^{-1}) \rightarrow (d \circ (a \circ q^{-1}) \rightarrow \neg a \circ z) \]

(IIa): \[\vdash \forall a \left[\neg a \circ z \rightarrow (d \circ (a \circ (q^{-1} \mid z)^{-1})) \rightarrow \neg a \circ z \right] \]

(8): \[\vdash u \circ (z \circ q^{-1} : \rightarrow) \rightarrow \]

\[(\forall a \left[d \circ (a \circ ((q^{-1} \mid z)^{-1})^{-1}) \rightarrow \neg a \circ z \rightarrow \neg d \circ u \right] \]

(11): \[\vdash u \circ (z \circ q^{-1} : \rightarrow) \rightarrow \]

\[\forall u \left[\forall a \left[\forall \circ (a \circ ((q^{-1} \mid z)^{-1})^{-1}) \rightarrow \neg a \circ z \rightarrow \neg \forall \circ u \right] \right] \]

S.47

\[\vdash \text{funk} ((q^{-1} \mid z)^{-1})^{-1} \rightarrow \]

\[(u \circ (z \circ q^{-1} : \rightarrow) \rightarrow u \circ (z \circ ((q^{-1} \mid z)^{-1})^{-1} : \rightarrow)) \]

(29): \[\vdash \]
\[\vdash \text{funk} (q^{-1} |^2) \rightarrow (u \circ (z \circ q^{-1} : \rightarrow) \rightarrow u \circ (z \circ ((q^{-1} |^2)^{-1} : \rightarrow)) \quad (\eta) \]

(189) :: --- --- --- --- --- ---

\[\vdash \text{funk} (q^{-1}) \rightarrow (u \circ (z \circ q^{-1} : \rightarrow) \rightarrow u \circ (z \circ ((q^{-1} |^2)^{-1} : \rightarrow)) \quad (\vartheta) \]

(18) :: --- --- --- --- --- ---

\[\vdash u \circ (z \circ q^{-1} : \rightarrow) \rightarrow u \circ (z \circ ((q^{-1} |^2)^{-1} : \rightarrow)) \quad (451) \]

191 \[\vdash e \circ (a \circ (q^{-1} |^2)) \rightarrow a \circ z \]

(22) :: -------------------------------

\[\vdash a \circ (e \circ (q^{-1} |^2)^{-1}) \rightarrow a \circ z \quad (452) \]

\[\times \]

\[\vdash \neg a \circ z \rightarrow \neg a \circ (e \circ (q^{-1} |^2)^{-1}) \quad (\alpha) \]

\[\sim \]

\[\vdash \forall a \left[\neg a \circ z \rightarrow \forall e \left[\neg a \circ (e \circ (q^{-1} |^2)^{-1}) \right] \right] \quad (\beta) \]

(I1a) :: -------------------------------

\[\vdash \forall q \left[\forall a \left[\neg a \circ z \rightarrow \forall e \left[\neg a \circ (e \circ q) \right] \right] \rightarrow \right. \]

\[(u \circ (z \circ q^{-1} : \rightarrow) \rightarrow \neg z \circ (u \circ q : \rightarrow)) \rightarrow \]

\[(u \circ (z \circ ((q^{-1} |^2)^{-1} : \rightarrow) \rightarrow \neg z \circ (u \circ (q^{-1} |^2)^{-1} : \rightarrow)) \quad (\gamma) \]

(451) :: --- --- --- --- --- --- ---

\[\vdash \forall q \left[\forall a \left[\neg a \circ z \rightarrow \forall e \left[\neg a \circ (e \circ q) \right] \right] \rightarrow \right. \]

\[(u \circ (z \circ q^{-1} : \rightarrow) \rightarrow \neg z \circ (u \circ q : \rightarrow)) \rightarrow \]

\[(u \circ (z \circ q^{-1} : \rightarrow) \rightarrow \neg z \circ (u \circ q : \rightarrow)) \quad (\delta) \]

(449) :: --- --- --- --- --- --- ---

\[\vdash \forall q \left[\forall a \left[\neg a \circ z \rightarrow \forall e \left[\neg a \circ (e \circ q) \right] \rightarrow \right. \right. \]

\[(u \circ (z \circ q^{-1} : \rightarrow) \rightarrow \neg z \circ (u \circ q : \rightarrow)) \rightarrow \]

\[(u \circ (z \circ q^{-1} : \rightarrow) \rightarrow \neg z \circ (u \circ q : \rightarrow)) \quad (\varepsilon) \]
\(\vdash \forall q [\forall a [\neg a \circ z \rightarrow \forall e [\neg a \circ (e \circ q)]] \rightarrow (u \circ (z \circ q^{-1} :\rightarrow) \rightarrow \neg z \circ (u \circ q :\rightarrow))] \rightarrow \forall q [u \circ (z \circ q^{-1} :\rightarrow) \rightarrow \neg z \circ (u \circ q :\rightarrow)] \)

(49) :

\[\neg \text{anz}(z) = \text{anz}(u) \]

S.48

b) Beweis des Satzes

\[\vdash \forall a [\neg a \circ v \rightarrow \forall e [\neg a \circ (e \circ p)]] \rightarrow (\forall a [\neg a \circ z \rightarrow \forall e [\neg a \circ (e \circ q)]] \rightarrow (\forall a [a \circ v \rightarrow \neg a \circ z] \rightarrow (v \circ (w \circ p :\rightarrow) \rightarrow (z \circ (u \circ q :\rightarrow) \rightarrow \text{ext}(\neg e \circ v \rightarrow e \circ z) \circ (\text{ext}(\neg e \circ w \rightarrow e \circ u) \circ (q \cup p) :\rightarrow)))' \]

mit (8) und (11).

\[q \cup p := \text{ext}(\neg e \circ (a \circ p) \rightarrow e \circ (a \circ q)) \]

(456)

\[\vdash \neg e \circ (a \circ p) \rightarrow e \circ (a \circ q) \rightarrow e \circ (a \circ (q \cup p)) \]

(10) :

\[\vdash (\neg e \circ (a \circ p) \rightarrow e \circ (a \circ q)) \rightarrow e \circ (a \circ (q \cup p)) \]

(454)

\[\vdash e \circ (a \circ q) \rightarrow e \circ (a \circ (q \cup p)) \]

(455)

\[454 \vdash (\neg e \circ (a \circ p) \rightarrow e \circ (a \circ q)) \rightarrow e \circ (a \circ (q \cup p)) \]

(1a) :

\[\vdash e \circ (a \circ p) \rightarrow e \circ (a \circ (q \cup p)) \]

(456)

\[\text{If } \vdash \neg e \circ v \rightarrow (\neg e \circ z \rightarrow \neg (\neg e \circ v \rightarrow e \circ z)) \]

(77) :

\[\vdash \neg e \circ v \rightarrow (\neg e \circ z \rightarrow \neg (\neg e \circ v \rightarrow e \circ z)) \]
\[\vdash e \emptyset v \rightarrow (e \emptyset z \rightarrow \neg e \emptyset \emptyset \emptyset (\neg e \emptyset v \rightarrow e \emptyset z)) \]
(8) :: — — — — — — —

S.49

\[\vdash e \emptyset v \rightarrow (z \emptyset (u \emptyset q :\rightarrow) \rightarrow (\forall a [e \emptyset (a \emptyset q) \rightarrow \neg a \emptyset u] \rightarrow \neg e \emptyset \emptyset \emptyset (\neg e \emptyset v \rightarrow e \emptyset z))) \]
(457)

\[\vdash (\neg a \emptyset w \rightarrow a \emptyset u) \rightarrow \neg a \emptyset u \]
(77) :: — — — — — — —

\[\vdash a \emptyset \emptyset \emptyset \emptyset (\neg e \emptyset w \rightarrow e \emptyset u) \rightarrow \neg a \emptyset u \]
(IIa) :: — — — — — — —

\[\vdash \forall a [e \emptyset (a \emptyset (q \emptyset p)) \rightarrow \neg a \emptyset \emptyset \emptyset \emptyset (\neg e \emptyset w \rightarrow e \emptyset u)] \rightarrow \neg e \emptyset \emptyset \emptyset \emptyset (\neg e \emptyset (a \emptyset (q \emptyset p))) \rightarrow \neg a \emptyset u \]
(455) :: — — — — — — —

\[\vdash \forall a [e \emptyset (a \emptyset (q \emptyset p)) \rightarrow \neg a \emptyset \emptyset \emptyset \emptyset (\neg e \emptyset w \rightarrow e \emptyset u)] \rightarrow \neg e \emptyset \emptyset \emptyset \emptyset (\neg e \emptyset v \rightarrow e \emptyset z)) \]
(457)

\[\vdash \forall a [e \emptyset (a \emptyset (q \emptyset p)) \rightarrow \neg a \emptyset \emptyset \emptyset \emptyset (\neg e \emptyset w \rightarrow e \emptyset u)] \rightarrow e \emptyset \emptyset \emptyset \emptyset (\neg e \emptyset v \rightarrow e \emptyset z)) \]
(457)

\[\vdash (\neg a \emptyset w \rightarrow a \emptyset u) \rightarrow \neg a \emptyset w \]
(77) :: — — — — — — —

\[\vdash a \emptyset \emptyset \emptyset \emptyset (\neg e \emptyset w \rightarrow e \emptyset u) \rightarrow \neg a \emptyset w \]
(IIa) :: — — — — — — —

\[\vdash \forall a [e \emptyset (a \emptyset (q \emptyset p)) \rightarrow \neg a \emptyset \emptyset \emptyset \emptyset (\neg e \emptyset w \rightarrow e \emptyset u)] \rightarrow (e \emptyset (a \emptyset (q \emptyset p))) \rightarrow \neg a \emptyset w \]
(456) :: — — — — — — —

\[\vdash \forall a [e \emptyset (a \emptyset (q \emptyset p)) \rightarrow \neg a \emptyset \emptyset \emptyset \emptyset (\neg e \emptyset w \rightarrow e \emptyset u)] \rightarrow (e \emptyset (a \emptyset p)) \rightarrow \neg a \emptyset w \]
(456)

\[\vdash \forall a [e \emptyset (a \emptyset (q \emptyset p)) \rightarrow \neg a \emptyset \emptyset \emptyset \emptyset (\neg e \emptyset w \rightarrow e \emptyset u)] \rightarrow (e \emptyset (a \emptyset p)) \rightarrow \neg a \emptyset w \]
(456)

\[\vdash (\neg a \emptyset w \rightarrow a \emptyset u) \rightarrow (a \emptyset w) \]
(8) :: — — — — — — —
\[\vdash v \varphi \left(w \varphi p : \Rightarrow \right) \rightarrow \\
(\forall a \left[e \varphi \left(a \varphi (q \cup p) \right) \rightarrow \neg a \varphi \varepsilon \left(\neg e \varphi w \rightarrow e \varphi u \right) \right] \rightarrow \neg e \varphi v \right) \]

\[\neg e \varphi \varepsilon \left(\neg e \varphi w \rightarrow e \varphi u \right) \rightarrow \\
\neg e \varphi \varepsilon \left(\neg e \varphi v \rightarrow e \varphi z \right) \]

\[(\zeta) \]

\[\vdash v \varphi \left(w \varphi p : \Rightarrow \right) \rightarrow (z \varphi \left(u \varphi q : \Rightarrow \right) \rightarrow \\
\forall \delta \left[\delta \varphi \left(\delta \varphi (q \cup p) \right) \rightarrow \neg \delta \varphi \varepsilon \left(\neg e \varphi w \rightarrow e \varphi u \right) \right] \rightarrow \\
\neg \delta \varphi \varepsilon \left(\neg e \varphi v \rightarrow e \varphi z \right) \]

\[(\eta) \]

\[\vdash \text{funk} \left(q \cup p \right) \rightarrow (v \varphi \left(w \varphi p : \Rightarrow \right) \rightarrow (z \varphi \left(u \varphi q : \Rightarrow \right) \rightarrow \\
\text{ext} \varepsilon \left(\neg e \varphi v \rightarrow e \varphi z \right) \delta \left(\text{ext} \varepsilon \left(\neg e \varphi w \rightarrow e \varphi u \right) \delta \left(q \cup p \right) : \Rightarrow \right)) \]

\[(459) \]

\[\vdash \text{funk} \left(q \cup p \right) \rightarrow \\
(\forall \alpha \left[\neg e \varphi \left(\neg e \varphi v \rightarrow e \varphi z \right) \right] \rightarrow \\
\neg e \varphi \varepsilon \left(\neg e \varphi w \rightarrow e \varphi u \right) \delta \left(q \cup p \right) : \Rightarrow \right) \]

§ 40. Aufbau.

\[\vdash \text{ext} \alpha \text{ext} \varepsilon \left(\neg e \varphi \left(\alpha \varphi p \right) \rightarrow e \varphi \left(\alpha \varphi q \right) \right) = q \cup p \]

\[(6) : \]

\[\vdash e \varphi \left(d \varphi (q \cup p) \right) \rightarrow \neg e \varphi \left(d \varphi p \right) \rightarrow e \varphi \left(d \varphi q \right) \]

\[(460) \]

\[\times \]

\[\vdash e \varphi \left(d \varphi (q \cup p) \right) \rightarrow \neg e \varphi \left(d \varphi q \right) \rightarrow e \varphi \left(d \varphi p \right) \]

\[(461) \]

\[(IIa) : \]

\[\vdash \text{ext} \alpha \text{ext} \varepsilon \left(\neg e \varphi \left(\alpha \varphi p \right) \rightarrow e \varphi \left(\alpha \varphi q \right) \right) = q \cup p \]

\[(6) : \]

\[\vdash e \varphi \left(d \varphi (q \cup p) \right) \rightarrow \neg e \varphi \left(d \varphi p \right) \rightarrow e \varphi \left(d \varphi q \right) \]

\[(460) \]

\[\times \]

\[\vdash e \varphi \left(d \varphi (q \cup p) \right) \rightarrow \neg e \varphi \left(d \varphi q \right) \rightarrow e \varphi \left(d \varphi p \right) \]

\[(461) \]

\[(IIa) : \]

\[\vdash \text{ext} \alpha \text{ext} \varepsilon \left(\neg e \varphi \left(\alpha \varphi p \right) \rightarrow e \varphi \left(\alpha \varphi q \right) \right) = q \cup p \]

\[(6) : \]

\[\vdash e \varphi \left(d \varphi (q \cup p) \right) \rightarrow \neg e \varphi \left(d \varphi p \right) \rightarrow e \varphi \left(d \varphi q \right) \]

\[(460) \]

\[\times \]

\[\vdash e \varphi \left(d \varphi (q \cup p) \right) \rightarrow \neg e \varphi \left(d \varphi q \right) \rightarrow e \varphi \left(d \varphi p \right) \]

\[(461) \]

\[(IIa) : \]
\[\vdash e \circ (d \circ (q \cup p)) \rightarrow (\forall e \left[\neg e \circ (e \circ q) \right] \rightarrow e \circ (d \circ p)) \] \hspace{1cm} (\alpha)

(IIa) :: \hspace{1cm} -- -- -- -- -- --

\[\vdash e \circ (d \circ (q \cup p)) \rightarrow (\forall a [\neg a \circ z \rightarrow \forall e [\neg a \circ (e \circ q)]] \rightarrow (\neg e \circ z \rightarrow e \circ (d \circ p)) \) \hspace{1cm} (\beta)

(IIa) :: \hspace{1cm} -- -- -- -- -- --

\[\vdash e \circ (d \circ (q \cup p)) \rightarrow (\forall a [\neg a \circ z \rightarrow \forall e [\neg a \circ (e \circ q)]] \rightarrow (\forall a [a \circ v \rightarrow \neg a \circ z] \rightarrow (e \circ v \rightarrow e \circ (d \circ p)))) \] \hspace{1cm} (\gamma)

(13) :: \hspace{1cm} -- -- -- -- -- --

S.51

\[\vdash \text{funk} (p) \rightarrow (e \circ (d \circ (q \cup p)) \rightarrow (\forall a [\neg a \circ z \rightarrow \forall e [\neg a \circ (e \circ q)]] \rightarrow (\forall a [a \circ v \rightarrow \neg a \circ z] \rightarrow (e \circ v \rightarrow (e \circ (a \circ p) \rightarrow d = a)))) \] \hspace{1cm} (\delta)

(\gamma) :: \hspace{1cm} -- -- -- -- -- --

\[\vdash \text{funk} (p) \rightarrow (e \circ (d \circ (q \cup p)) \rightarrow (\forall a [\neg a \circ z \rightarrow \forall e [\neg a \circ (e \circ q)]] \rightarrow (\forall a [a \circ v \rightarrow \neg a \circ z] \rightarrow (e \circ v \rightarrow (e \circ (a \circ (q \cup p)) \rightarrow d = a)))) \] \hspace{1cm} (\varepsilon)

\[\text{IIa} \quad \vdash \forall e [\neg e \circ (e \circ p)] \rightarrow \neg e \circ (d \circ p) \] \hspace{1cm} (460) :: \hspace{1cm} -- -- -- -- -- --

\[\vdash e \circ (d \circ (q \cup p)) \rightarrow (\forall e [\neg e \circ (e \circ p)] \rightarrow \neg e \circ (d \circ q)) \] \hspace{1cm} (\zeta)

(IIa) :: \hspace{1cm} -- -- -- -- -- --

\[\vdash e \circ (d \circ (q \cup p)) \rightarrow (\forall a [\neg a \circ v \rightarrow \forall e [\neg a \circ (e \circ p)]] \rightarrow (\neg e \circ v \rightarrow e \circ (d \circ q))) \] \hspace{1cm} (\eta)

(13) :: \hspace{1cm} -- -- -- -- -- --

\[\vdash \text{funk} (q) \rightarrow (e \circ (d \circ (q \cup p)) \rightarrow (\forall a [\neg a \circ v \rightarrow \forall e [\neg a \circ (e \circ p)]] \rightarrow (\neg e \circ v \rightarrow (e \circ (a \circ q) \rightarrow d = a)))) \] \hspace{1cm} (\theta)

(\eta) :: \hspace{1cm} -- -- -- -- -- --

\[\vdash \text{funk} (q) \rightarrow (e \circ (d \circ (q \cup p)) \rightarrow (\forall a [\neg a \circ v \rightarrow \forall e [\neg a \circ (e \circ p)]] \rightarrow (\neg e \circ v \rightarrow (e \circ (a \circ (q \cup p)) \rightarrow d = a)))) \] \hspace{1cm} (\iota)

(\varepsilon) :: \hspace{1cm} -- -- -- -- -- --
\[\vdash \forall a \neg a \circ v \rightarrow \forall e \neg a \circ (e \circ p) \rightarrow (\forall a \neg a \circ z \rightarrow \forall e \neg a \circ (e \circ q)) \rightarrow (\forall a \circ v \rightarrow \neg a \circ z) \rightarrow (\operatorname{funk} (p) \rightarrow (\operatorname{funk} (q) \rightarrow (e \circ (d \circ (q \cup p)) \rightarrow (e \circ (a \circ (q \cup p)) \rightarrow d = a)))) \] (κ)

(16) :

\[\vdash \forall a \neg a \circ v \rightarrow \forall e \neg a \circ (e \circ p) \rightarrow (\forall a \neg a \circ z \rightarrow \forall e \neg a \circ (e \circ q)) \rightarrow (\forall a \circ v \rightarrow \neg a \circ z) \rightarrow (\operatorname{funk} (p) \rightarrow (\operatorname{funk} (q) \rightarrow \operatorname{funk} (q \cup p)))) \] (μ)

(18, 18) ::

\[\vdash \forall a \neg a \circ v \rightarrow \forall e \neg a \circ (e \circ p) \rightarrow (\forall a \neg a \circ z \rightarrow \forall e \neg a \circ (e \circ q)) \rightarrow (\forall a \circ v \rightarrow \neg a \circ z) \rightarrow (\operatorname{funk} (p) \rightarrow (\operatorname{funk} (q) \rightarrow \operatorname{funk} (q \cup p)))) \] (462)

(459) :

\[\vdash \forall a \neg a \circ v \rightarrow \forall e \neg a \circ (e \circ p) \rightarrow (\forall a \neg a \circ z \rightarrow \forall e \neg a \circ (e \circ q)) \rightarrow (\forall a \circ v \rightarrow \neg a \circ z) \rightarrow (\operatorname{funk} (p) \rightarrow (\operatorname{funk} (q) \rightarrow \operatorname{funk} (q \cup p))) \rightarrow \operatorname{ext} e (\neg e \circ v \rightarrow e \circ z) \circ (\operatorname{ext} e (\neg e \circ w \rightarrow e \circ u) \circ (q \cup p) \rightarrow)))) \] (463)
c) Beweis des Satzes

\[\vdash \forall a [\neg \ exist \ (e p)] \rightarrow \]
\[(\forall a [\neg \ exist \ z] \rightarrow \forall e [\neg \ exist \ (e q)]) \rightarrow \]
\[(\forall w (w \ exist p :\rightarrow) \rightarrow (\neg \ exist (u \ exist q :\rightarrow)) \rightarrow \]
\[(\forall [\neg \ exist w \rightarrow \neg \ exist u] \rightarrow (w \ exist (v p^{-1} :\rightarrow) \rightarrow (\neg \ exist (z \ exist q^{-1} :\rightarrow)) \rightarrow \]
\[\neg \ exist (e \ exist u) \exist e (\neg \ exist v \rightarrow \neg \ exist z) \exist (q \cup p^{-1} :\rightarrow)))]' \]

und Schluss des Abschnittes Ξ.

§ 41. Zerlegung.

Um einen Satz mit dem Hintergliede zu erhalten, setzen wir in (463) für 'q' 'q^{-1}', für 'p' 'p^{-1}' und vertauschen 'z' mit 'u' und 'v' mit 'w'. Wir brauchen dann den Satz
\[\vdash (q \cup p^{-1}) = q^{-1} \cup p^{-1} \]
(α)

§ 42. Aufbau.

18 \[\vdash d \ exist (e q) = e \ exist (d \ exist q^{-1}) \]

(IIIh) :
\[\vdash (\neg d \ exist (e p)
\vdash d \ exist (e q)) = (\neg d \ exist (e p)
\vdash e \ exist (d \ exist q^{-1})) \]
(α)

(IIIc) :
\[\vdash (\neg d \ exist (e p)
\vdash d \ exist (e q)) =
\vdash (\neg e \ exist (d p^{-1})
\vdash e \ exist (d q^{-1})) \]
(β)

(21) ::
\[\vdash (\neg d \ exist (e p)
\vdash d \ exist (e q)) =
\vdash (\neg e \ exist (d p^{-1})
\vdash e \ exist (d q^{-1})) \]
(γ)

\[\vdash \forall \forall a [(\neg \ exist (a p) \rightarrow \exist (a q))] =
\vdash (\neg \ exist (a p^{-1}) \rightarrow \exist (a q^{-1})) \]
(δ)

(20) :
\[\vdash \exist \exist \exist \exist (\neg \ exist (e p) \rightarrow \exist (e q)) =
\exist \exist \exist \exist (\neg e \ exist (a p^{-1}) \rightarrow e \ exist (a q^{-1})) \]
(ε)

18 Um einen Satz mit dem Obergliede

#19 Textkorrektur infolge modernisierter Formelnotation!
\[\vdash \text{ext } \alpha \text{ ext } \varepsilon \left(\neg \varepsilon (\alpha \varepsilon p^{-1}) \rightarrow \varepsilon (\alpha \varepsilon q^{-1}) \right) = q^{-1} \cup p^{-1} \]

\[\text{(\(\Upsilon\))} :: \]

\[\vdash \text{ext } \alpha \text{ ext } \varepsilon \left(\neg \alpha \varepsilon (\varepsilon \alpha p) \rightarrow \alpha \varepsilon (\varepsilon \alpha q) \right) = q^{-1} \cup p^{-1} \]

\[\text{(IIIc)} :: \]

\[\vdash \text{ext } \alpha \text{ ext } \varepsilon \left(\neg \alpha \varepsilon (\varepsilon \alpha p) \rightarrow \alpha \varepsilon (\varepsilon \alpha q) \right)^{-1} = q^{-1} \cup p^{-1} \]

\[\text{(40)} :: \]

\[\vdash \text{ext } \alpha \text{ ext } \varepsilon \left(\neg \varepsilon (\alpha \varepsilon p) \rightarrow \varepsilon (\alpha \varepsilon q) \right)^{-1} = q^{-1} \cup p^{-1} \]

\[\text{(IIIc)} :: \]

\[\vdash \text{ext } \alpha \text{ ext } \varepsilon \left(\neg \varepsilon (\alpha \varepsilon p) \rightarrow \varepsilon (\alpha \varepsilon q) \right) = q \cup p \rightarrow (q \cup p)^{-1} = q^{-1} \cup p^{-1} \]

\[\text{(\(\Upsilon\))} :: \]

\[\vdash (q \cup p)^{-1} = q^{-1} \cup p^{-1} \]

\[\text{(464)} \]

\[\text{§ 43. Zerlegung.} \]

Indem wir in (463) die Veränderungen machen, die im § 41 angegeben sind, erhalten wir ein Vorderglied:

\[\forall a \left[\neg \alpha \varepsilon u \rightarrow \forall \varepsilon \left[\neg \alpha \varepsilon (\varepsilon \alpha q^{-1}) \right] \right] \]

das wir mit dem Satz

\[\vdash \forall a \left[\neg \alpha \varepsilon z \rightarrow \forall \varepsilon \left[\neg \alpha \varepsilon (\varepsilon \alpha q) \right] \rightarrow \right. \]

\[\left. \forall a \left[\neg \alpha \varepsilon u \rightarrow \forall \varepsilon \left[\neg \alpha \varepsilon (\varepsilon \alpha q^{-1}) \right] \right] \right] \]

wegschatzen. Wir brauchen dazu den Satz

\[\vdash \neg a \varepsilon u \rightarrow (z \varepsilon (u \varepsilon q : \rightarrow) \rightarrow (e \varepsilon (a \varepsilon q) \rightarrow \neg e \varepsilon z)) \]

den wir mit (13) beweisen.

\[\text{§ 44. Aufbau.} \]

\[\text{IIIc} \]

\[\vdash \neg a \varepsilon u \rightarrow (a = b \rightarrow \neg b \varepsilon u) \]

\[(13) :: \]

\[\vdash \neg a \varepsilon u \rightarrow \left(\text{funk}(q) \rightarrow (e \varepsilon (a \varepsilon q) \rightarrow (e \varepsilon (b \varepsilon q) \rightarrow \neg b \varepsilon u)) \right) \]

\[(\alpha) \]

\[\text{\(\text{\cite{19} erhalten wir ein Unterglied}\)} \]

\[\text{\(\text{\cite{20} Textkorrektur infolge modernisierter Formelnotation!}\)} \]
$\vdash \neg a \varepsilon u \rightarrow (\text{funk}(q) \rightarrow (e \varepsilon (a \varepsilon q) \rightarrow \forall a [e \varepsilon (a \varepsilon q) \rightarrow \neg a \varepsilon u])$ \quad (\beta)

(8):

$\vdash z \varepsilon (u \varepsilon q : \Rightarrow) \rightarrow (\neg a \varepsilon u \rightarrow (\text{funk}(q) \rightarrow (e \varepsilon (a \varepsilon q) \rightarrow \neg e \varepsilon z))$ \quad (\gamma)

(18):

$\vdash a \varepsilon u \rightarrow (z \varepsilon (u \varepsilon q : \Rightarrow) \rightarrow (e \varepsilon (a \varepsilon q) \rightarrow \neg e \varepsilon z))$ \quad (465)

\times

$\vdash a \varepsilon u \rightarrow (z \varepsilon (u \varepsilon q : \Rightarrow) \rightarrow (e \varepsilon z \rightarrow \neg e \varepsilon (a \varepsilon q)))$ \quad (466)

$\vdash \forall e [\neg e \varepsilon (e \varepsilon q)] \rightarrow \neg e \varepsilon (a \varepsilon q)$

(IIa):

$\vdash \forall a [\neg a \varepsilon z \rightarrow \forall e [\neg a \varepsilon (e \varepsilon q)]] \rightarrow (\neg e \varepsilon z \rightarrow \neg e \varepsilon (a \varepsilon q))$ \quad (\alpha)

(466):

$\vdash \forall a [\neg a \varepsilon z \rightarrow \forall e [\neg a \varepsilon (e \varepsilon q)]] \rightarrow$

$(z \varepsilon (u \varepsilon q : \Rightarrow) \rightarrow (\neg a \varepsilon u \rightarrow \neg e \varepsilon (a \varepsilon q)))$ \quad (\beta)

(22):

$\vdash \forall a [\neg a \varepsilon z \rightarrow \forall e [\neg a \varepsilon (e \varepsilon q)]] \rightarrow$

$(z \varepsilon (u \varepsilon q : \Rightarrow) \rightarrow (\neg a \varepsilon u \rightarrow \neg a \varepsilon (e \varepsilon q^{-1})))$ \quad (\gamma)

$\vdash \forall a [\neg a \varepsilon z \rightarrow \forall e [\neg a \varepsilon (e \varepsilon q)]] \rightarrow$

$(z \varepsilon (u \varepsilon q : \Rightarrow) \rightarrow \forall a [\neg a \varepsilon u \rightarrow \forall e [\neg a \varepsilon (e \varepsilon q^{-1})]])$ \quad (467)

$\vdash (q \cup p)^{-1} = q^{-1} \cup p^{-1}$

(IIIa):

$\vdash \text{ext} e (\neg e \varepsilon w \rightarrow e \varepsilon u) \varepsilon (\text{ext} e (\neg e \varepsilon v \rightarrow e \varepsilon z) \varepsilon (q^{-1} \cup p^{-1}) : \Rightarrow) \rightarrow$

$\text{ext} e (\neg e \varepsilon w \rightarrow e \varepsilon u) \varepsilon (\text{ext} e (\neg e \varepsilon v \rightarrow e \varepsilon z) \varepsilon (q \cup p)^{-1} : \Rightarrow)$ \quad (\alpha)

(463):

$\vdash \text{ext} e (\neg e \varepsilon w \rightarrow e \varepsilon u) \varepsilon (\text{ext} e (\neg e \varepsilon v \rightarrow e \varepsilon z) \varepsilon (q^{-1} \cup p^{-1}) : \Rightarrow)$ \quad (\alpha)
\[\vdash \forall a \ [\neg a \circ w \rightarrow \forall e [\neg a \circ (e \circ p^{-1})]] \rightarrow \\
(\forall a \ [\neg a \circ u \rightarrow \forall e [\neg a \circ (e \circ q^{-1})]] \rightarrow \\
(\forall a \ [a \circ w \rightarrow \neg a \circ u] \rightarrow (w \circ (v \circ p^{-1} :\rightarrow) \rightarrow (u \circ (z \circ q^{-1} :\rightarrow) \rightarrow \\
\text{ext} e (\neg e \circ w \rightarrow e \circ u) \circ (\text{ext} e (\neg e \circ v \rightarrow e \circ z) \circ (q \cup p)^{-1} :\rightarrow))))) \\
(\beta) \]
\[
\vdash \forall a \ [\neg \ a \ v \rightarrow \forall e \ [\neg \ a \ (e \ p)]] \rightarrow (\forall e \ [a \ v \rightarrow \neg \ a \ u] \rightarrow (w \ v \ (v \ p^{-1} : \rightarrow) \rightarrow (\forall e \ [a \ v \rightarrow \neg \ a \ z] \rightarrow (v \ v \ (w \ p : \rightarrow) \rightarrow \\
(\neg \ \text{anz} \ (e \ v \ v \rightarrow e \ z) = \text{anz} \ (e \ w \ w \rightarrow e \ u)) \rightarrow \\
\forall q \ [\forall a \ [\neg \ a \ z \rightarrow \forall e \ [\neg \ a \ (e \ q)]] \rightarrow \\
(u \ v \ (z \ q^{-1} : \rightarrow) \rightarrow \neg \ z \ v \ (u \ q : \rightarrow) \])))) \]

(\delta)

S.57

\[
\vdash \forall a \ [\neg \ a \ v \rightarrow \forall e \ [\neg \ a \ (e \ p)]] \rightarrow (\forall e \ [a \ v \rightarrow \neg \ a \ u] \rightarrow \\
(w \ v \ (v \ p^{-1} : \rightarrow) \rightarrow (\forall e \ [a \ v \rightarrow \neg \ a \ z] \rightarrow (v \ v \ (w \ p : \rightarrow) \rightarrow \\
(\neg \ \text{anz} \ (e \ v \ v \rightarrow e \ z) = \text{anz} \ (e \ w \ w \rightarrow e \ u)) \rightarrow \\
\forall q \ [\forall a \ [\neg \ a \ z \rightarrow \forall e \ [\neg \ a \ (e \ q)]] \rightarrow \\
(u \ v \ (v \ q^{-1} : \rightarrow) \rightarrow \neg \ v \ v \ (u \ q : \rightarrow) \))))) \rightarrow \neg \ a \ u \rightarrow \neg \ a \ z
\]

(\epsilon)

\[
\vdash \forall a \ [a \ v \rightarrow \neg \ a \ u] \rightarrow (\forall a \ [a \ v \rightarrow \neg \ a \ z] \rightarrow \\
(\neg \ \text{anz} \ (e \ v \ v \rightarrow e \ z) = \text{anz} \ (e \ w \ w \rightarrow e \ u)) \rightarrow \\
(\neg \ \text{anz} \ (z) = \text{anz} \ (u)) \rightarrow \\
\forall q \ [\forall a \ [\neg \ a \ v \rightarrow \forall e \ [\neg \ a \ (e \ q)]] \rightarrow \\
(u \ v \ (v \ q^{-1} : \rightarrow) \rightarrow \neg \ v \ v \ (u \ q : \rightarrow) \))))) \rightarrow \neg \ a \ u \rightarrow \neg \ a \ z
\]

(\zeta)

S.58

\[
\vdash \forall a \ [a \ v \rightarrow \neg \ a \ u] \rightarrow (\forall a \ [a \ v \rightarrow \neg \ a \ z] \rightarrow \\
(\neg \ \text{anz} \ (e \ v \ v \rightarrow e \ z) = \text{anz} \ (e \ w \ w \rightarrow e \ u)) \rightarrow \\
(\neg \ \text{anz} \ (z) = \text{anz} \ (u)) \rightarrow \\
\forall q \ [\forall a \ [\neg \ a \ v \rightarrow \forall e \ [\neg \ a \ (e \ q)]] \rightarrow \\
(u \ v \ (v \ q^{-1} : \rightarrow) \rightarrow \neg \ v \ v \ (u \ q : \rightarrow) \))))) \rightarrow \neg \ a \ v \rightarrow \neg \ a \ z
\]

(\eta)

(453) :

\[
\vdash \forall a \ [a \ v \rightarrow \neg \ a \ u] \rightarrow (\forall a \ [a \ v \rightarrow \neg \ a \ z] \rightarrow \\
(\neg \ \text{anz} \ (e \ v \ v \rightarrow e \ z) = \text{anz} \ (e \ w \ w \rightarrow e \ u)) \rightarrow \\
(\neg \ \text{anz} \ (z) = \text{anz} \ (u)) \rightarrow \\
\forall q \ [\forall a \ [\neg \ a \ v \rightarrow \forall e \ [\neg \ a \ (e \ q)]] \rightarrow \\
(u \ v \ (v \ q^{-1} : \rightarrow) \rightarrow \neg \ v \ v \ (u \ q : \rightarrow) \))))) \rightarrow \neg \ a \ v \rightarrow \neg \ a \ z
\]

(\theta)

(469)
O. Folgesätze.

a) Beweis des Satzes

\[\vdash \forall a \left[a \triangleright u \rightarrow a \triangleright w \right] \rightarrow \left(\forall a \left[a \triangleright z \rightarrow a \triangleright v \right] \rightarrow \left(\text{anz} \left(\text{ext} \left(\neg \left(\epsilon \triangleright v \rightarrow \epsilon \triangleright z \right) \right) \right) = \text{anz} \left(\text{ext} \left(\neg \left(\epsilon \triangleright w \rightarrow \epsilon \triangleright u \right) \right) \right) \rightarrow \left(\text{anz} \left(z \right) = \text{anz} \left(u \right) \rightarrow \text{anz} \left(v \right) = \text{anz} \left(w \right) \right) \right) \]

§ 45. Zerlegung.

Indem wir in (469) ,\(z^* \) und ,\(u^* \) unverändert lassen, für \(v^* \) aber \(\left(\neg \left(\epsilon \triangleright v \rightarrow \epsilon \triangleright z \right) \right) \) * und für \(w^* \), ext \(\left(\neg \left(\epsilon \triangleright w \rightarrow \epsilon \triangleright u \right) \right) \) *-einsetzen und die Vorderglieder –

\[\vdash \forall a \left[a \triangleright z \rightarrow a \triangleright v \right] \]

und

\[\vdash \forall a \left[a \triangleright u \rightarrow a \triangleright w \right] \]

hinzufügen, gelangen wir leicht zu dem Satze in unserer Überschrift.

Wenn wir dann für ,\(z^* \), ext \(\epsilon \triangleright z \) einsetzen und die Bedingung hinzufügen, dass \(c \) unter den \(u \)-Begriff falle, erhalten wir den Satz

\[\vdash \forall a \left[a \triangleright u \rightarrow a \triangleright w \right] \rightarrow \left(\text{anz} \left(u \right) \triangleright \left(\text{anz} \left(u \right) \triangleright \text{anz} \left(w \right) \triangleright \text{anz} \left(w \right) \triangleright \text{anz} \left(u \right) \right) \right) \]

Wir können von ihm Gebrauch machen, um zu beweisen, dass jede Anzahl zu einer Anzahl in der nf-Beziehung steht, was im 1. Bd. nur für endliche Anzahlen gezeigt ist. Nehmen wir an, dem \(w \)-Begriff komme eine Anzahl \(n \) zu. Dann gibt es entweder einen Gegenstand \(c \), der nicht unter ihn fällt, und dann steht \(\text{anz} \left(w \right) \) zu ,\(\text{anz} \left(\text{ext} \left(\neg \epsilon \rightarrow \epsilon \triangleright v \right) \right) \) * in der nf-Beziehung; oder es gibt keinen solchen Gegenstand; dann ist der \(\left(\text{anz} \left(0 \right) \triangleright \text{anz} \left(v \right) \right) \) *-Begriff dem \(w \)-Begriff untergeordnet, und wir finden nach dem Satze \((\alpha) \), dass \(\text{anz} \left(w \right) \) zu sich selber in der nf-Beziehung steht.

Um den Satz in unserer Überschrift zu beweisen, müssen wir zeigen, dass

\[\text{anz} \left(\text{ext} \left(\neg \epsilon \triangleright v \rightarrow \epsilon \triangleright z \right) \rightarrow \epsilon \triangleright z \right) \] mit \(\text{anz} \left(v \right) \) zusammenfällt, wenn der \(z \)-Begriff dem \(v \)-Begriff untergeordnet ist.

§ 46. Aufbau.

\[\vdash \neg \left(a \triangleright v \rightarrow a \triangleright z \right) \rightarrow a \triangleright z \]

\[\text{anz} \left(\text{ext} \left(\neg \left(\epsilon \triangleright v \rightarrow \epsilon \triangleright z \right) \right) \right) = \text{anz} \left(\text{ext} \left(\neg \left(\epsilon \triangleright w \rightarrow \epsilon \triangleright u \right) \right) \right) \rightarrow \left(\text{anz} \left(z \right) = \text{anz} \left(u \right) \rightarrow \text{anz} \left(v \right) = \text{anz} \left(w \right) \right) \]

\[(77) : \]

\[\vdash a \triangleright \text{ext} \left(\neg \left(\epsilon \triangleright v \rightarrow \epsilon \triangleright z \right) \right) \rightarrow a \triangleright z \]

\[(\alpha) \]

\[\vdash \forall a \left[a \triangleright \text{ext} \left(\neg \left(\epsilon \triangleright v \rightarrow \epsilon \triangleright z \right) \right) \rightarrow a \triangleright z \right] \]

\[(470) \]

\[\vdash \forall a \left[a \triangleright z \rightarrow a \triangleright v \right] \rightarrow \left(a \triangleright z \rightarrow a \triangleright v \right) \]

\[(I) : \]

\[[20] \text{einsatzende und die Unterglieder} \]

\[[21] \text{Textkorrektur infolge modernisierter Formelnotation!} \]
\[\vdash \forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow (((\alpha \cdot v \rightarrow \alpha \cdot z) \rightarrow \alpha \cdot z) \rightarrow ((\alpha \cdot v \rightarrow \alpha \cdot z) \rightarrow \alpha \cdot v)) \]

(Id) \#22

\[\vdash \forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow (((\alpha \cdot v \rightarrow \alpha \cdot z) \rightarrow \alpha \cdot z) \rightarrow \alpha \cdot v) \]

(IVa)

\[\vdash (\alpha \cdot v \rightarrow (((\alpha \cdot v \rightarrow \alpha \cdot z) \rightarrow \alpha \cdot z) \rightarrow \alpha \cdot v)) \rightarrow (\forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow ((\alpha \cdot v \rightarrow \alpha \cdot z) \rightarrow \alpha \cdot z) = (\neg \alpha \cdot v)) \]

(1)

\[\vdash \forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow ((\alpha \cdot v \rightarrow \alpha \cdot z) \rightarrow \alpha \cdot z) = (\neg \alpha \cdot v) \]

(58)

\[\vdash \forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow (\neg \alpha \cdot \text{ext} \varepsilon (\neg (\varepsilon \cdot v \rightarrow \varepsilon \cdot z)) \rightarrow \alpha \cdot z) = (\neg \alpha \cdot v) \]

(77)

\[\vdash \forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow (\neg \alpha \cdot \text{ext} \varepsilon (\neg \varepsilon \cdot \text{ext} \varepsilon (\neg (\varepsilon \cdot v \rightarrow \varepsilon \cdot z)) \rightarrow \varepsilon \cdot z)) = (\neg \alpha \cdot v) \]

S.60

\[\vdash \forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow \forall a [(\neg \alpha \cdot \text{ext} \varepsilon (\neg \varepsilon \cdot \text{ext} \varepsilon (\neg (\varepsilon \cdot v \rightarrow \varepsilon \cdot z)) \rightarrow \varepsilon \cdot z)) = (\neg \alpha \cdot v)] \]

(96)

\[\vdash \forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow \text{anz} (\text{ext} \varepsilon (\neg \varepsilon \cdot \text{ext} \varepsilon (\neg (\varepsilon \cdot v \rightarrow \varepsilon \cdot z)) \rightarrow \varepsilon \cdot z)) = \text{anz} (v) \]

(IIIc)

\[\vdash \forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow (\text{anz} (\text{ext} \varepsilon (\neg \varepsilon \cdot \text{ext} \varepsilon (\neg (\varepsilon \cdot v \rightarrow \varepsilon \cdot z)) \rightarrow \varepsilon \cdot z)) = \text{anz} (w) \rightarrow \text{anz} (v) = \text{anz} (w)) \]

(IIIa)

\[\vdash \text{anz} (\text{ext} \varepsilon (\neg \varepsilon \cdot \text{ext} \varepsilon (\neg (\varepsilon \cdot w \rightarrow \varepsilon \cdot u)) \rightarrow \varepsilon \cdot u)) = \text{anz} (w) \rightarrow (\forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow (\text{anz} (\text{ext} \varepsilon (\neg \varepsilon \cdot \text{ext} \varepsilon (\neg (\varepsilon \cdot v \rightarrow \varepsilon \cdot z)) \rightarrow \varepsilon \cdot z)) = \text{anz} (\text{ext} \varepsilon (\neg \varepsilon \cdot \text{ext} \varepsilon (\neg (\varepsilon \cdot w \rightarrow \varepsilon \cdot u)) \rightarrow \varepsilon \cdot u)) \rightarrow \text{anz} (v) = \text{anz} (w))) \]

(471)

\[\vdash (\forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow (\text{anz} (\text{ext} \varepsilon (\neg \varepsilon \cdot \text{ext} \varepsilon (\neg (\varepsilon \cdot w \rightarrow \varepsilon \cdot u)) \rightarrow \varepsilon \cdot u)) = \text{anz} (w) \rightarrow (\forall a [\alpha \cdot z \rightarrow \alpha \cdot v] \rightarrow (\text{anz} (\text{ext} \varepsilon (\neg \varepsilon \cdot \text{ext} \varepsilon (\neg (\varepsilon \cdot v \rightarrow \varepsilon \cdot z)) \rightarrow \varepsilon \cdot z)) = \text{anz} (\text{ext} \varepsilon (\neg \varepsilon \cdot \text{ext} \varepsilon (\neg (\varepsilon \cdot w \rightarrow \varepsilon \cdot u)) \rightarrow \varepsilon \cdot u)) \rightarrow \text{anz} (v) = \text{anz} (w))) \]

(471)
Um nun zu unserm Satze (§ 47. Zerlegung) zu gelangen, müssen wir beweisen, dass

\[
\forall a \, [a \, \text{v} \, \rightarrow \, a \, \text{z} \rightarrow a \, \text{w}] \rightarrow \neg (a \, \text{v} \, \rightarrow \, c)
\]

mit \(\forall a \, [a \, \text{v} \, \rightarrow \, a \, \text{w}] \rightarrow \neg (a \, \text{v} \, \rightarrow \, c)\) zusammenfällt, wenn \(c\) unter den \(w\)-Begriff fällt.

§ 48. Aufbau.

\[\begin{align*}
(IIa) \quad & \vdash \forall a \, [a \, \text{v} \, \rightarrow \, a \, \text{w}] \rightarrow (\neg a = c \rightarrow \neg (a \, \text{v} \, \rightarrow \, a = c)) \\
(Ic, Id) \quad & \vdash \forall a \, [a \, \text{v} \, \rightarrow \, a \, \text{w}] \rightarrow (\neg a = c \rightarrow \neg (a \, \text{v} \, \rightarrow \, a = c))
\end{align*}\]
\[\forall a \, [a \circ u \rightarrow a \circ w] \rightarrow \forall a \, [a \circ \text{ext} \, (\neg (\varepsilon \circ u \rightarrow \varepsilon = c)) \rightarrow a \circ \text{ext} \, \varepsilon \, (\neg (\varepsilon \circ w \rightarrow \varepsilon = c))] \]

(S.63)
\[\vdash \neg (a \circ w \rightarrow a \circ u) \rightarrow \]
\[\neg (\neg (a \circ w \rightarrow a = c) \rightarrow \neg (a \circ u \rightarrow a = c)) \rightarrow \]
\[(\neg (\neg (a \circ w \rightarrow a = c) \rightarrow \neg (a \circ u \rightarrow a = c))) = \]
\[(\neg (a \circ w \rightarrow a \circ u)) \]

(\varepsilon)::

\[\vdash \neg (a \circ w \rightarrow a = c) \rightarrow \neg (a \circ u \rightarrow a = c)) = \]
\[(\neg (a \circ w \rightarrow a \circ u)) \]

(77):

\[\vdash \neg (a \circ w \rightarrow a = c) \rightarrow a \circ \text{ext} \varepsilon (\neg (\varepsilon \circ u \rightarrow a = c))) = \]
\[(\neg (a \circ w \rightarrow a \circ u)) \]

(\lambda):

\[\vdash \neg (a \circ w \rightarrow a = c) \rightarrow a \circ \text{ext} \varepsilon (\neg (a \circ u \rightarrow a = c))) = \]
\[(\neg (a \circ w \rightarrow a \circ u)) \]

(77):

\[\vdash \neg (a \circ w \rightarrow a = c) \rightarrow a \circ \text{ext} \varepsilon (\neg (\varepsilon \circ u \rightarrow a = c))) = \]
\[(\neg (a \circ w \rightarrow a \circ u)) \]

(\mu):

\[\vdash \neg (a \circ w \rightarrow a = c) \rightarrow a \circ \text{ext} \varepsilon (\neg (\varepsilon \circ u \rightarrow a = c))) = \]
\[(\neg (a \circ w \rightarrow a \circ u)) \]

S.64

\[\vdash \neg (a \circ w \rightarrow a \circ u) \rightarrow \]
\[\forall a [(\neg (a \circ w \rightarrow a = c)) \rightarrow a \circ \text{ext} \varepsilon (\neg (\varepsilon \circ u \rightarrow a = c)))] = \]
\[(\neg (a \circ w \rightarrow a \circ u)) \]

(\xi):

\[\vdash \neg (a \circ w \rightarrow a \circ u) \rightarrow \]
\[\text{anz} (\neg \varepsilon \circ \text{ext} (\neg (\varepsilon \circ w \rightarrow a = c)) \rightarrow \]
\[\varepsilon \circ \text{ext} (\neg \varepsilon \circ u \rightarrow a = c))) = \]
\[\text{anz} (\neg (\varepsilon \circ w \rightarrow a \circ u)) \]

(\upsilon):

\[\vdash \forall a [a \circ u \rightarrow a \circ w] \rightarrow \]
\[(\forall a [a \circ \text{ext} \varepsilon (\neg \varepsilon \circ u \rightarrow a = c)) \rightarrow a \circ \text{ext} \varepsilon (\neg \varepsilon \circ w \rightarrow a = c)]) = \]
\[(c \circ u \rightarrow \text{anz} (\neg \varepsilon \circ w \rightarrow a = c))) = \text{anz} (\neg \varepsilon \circ u \rightarrow a = c)) \rightarrow \]
\[\text{anz} (\neg (\varepsilon \circ w \rightarrow a = c))) = \text{anz} (\varepsilon \circ u \rightarrow a = c)) \]

(\pi):

\[\vdash \forall a [a \circ u \rightarrow a \circ w] \rightarrow \]
\[(\forall a [a \circ \text{ext} \varepsilon (\neg \varepsilon \circ u \rightarrow a = c)) \rightarrow a \circ \text{ext} \varepsilon (\neg \varepsilon \circ w \rightarrow a = c)]) = \]
\[(c \circ u \rightarrow \text{anz} (\neg \varepsilon \circ w \rightarrow a = c))) = \text{anz} (\neg \varepsilon \circ u \rightarrow a = c)) \rightarrow \]
\[\text{anz} (\neg (\varepsilon \circ w \rightarrow a = c))) = \text{anz} (\varepsilon \circ u \rightarrow a = c)) \]

(\nu):

\[\vdash \forall a [a \circ u \rightarrow a \circ w] \rightarrow \]
\[(\forall a [a \circ \text{ext} \varepsilon (\neg \varepsilon \circ u \rightarrow a = c)) \rightarrow a \circ \text{ext} \varepsilon (\neg \varepsilon \circ w \rightarrow a = c)]) = \]
\[(c \circ u \rightarrow \text{anz} (\neg \varepsilon \circ w \rightarrow a = c))) = \text{anz} (\neg \varepsilon \circ u \rightarrow a = c)) \rightarrow \]
\[\text{anz} (\neg (\varepsilon \circ w \rightarrow a = c))) = \text{anz} (\varepsilon \circ u \rightarrow a = c)) \]

(\pi):

\[\vdash \forall a [a \circ u \rightarrow a \circ w] \rightarrow \]
\[(\forall a [a \circ \text{ext} \varepsilon (\neg \varepsilon \circ u \rightarrow a = c)) \rightarrow a \circ \text{ext} \varepsilon (\neg \varepsilon \circ w \rightarrow a = c)]) = \]
\[(c \circ u \rightarrow \text{anz} (\neg \varepsilon \circ w \rightarrow a = c))) = \text{anz} (\neg \varepsilon \circ u \rightarrow a = c)) \rightarrow \]
\[\text{anz} (\neg (\varepsilon \circ w \rightarrow a = c))) = \text{anz} (\varepsilon \circ u \rightarrow a = c)) \]

\[\vdash \forall a [a \circ u \rightarrow a \circ w] \rightarrow \]
\[(\forall a [a \circ \text{ext} \varepsilon (\neg \varepsilon \circ u \rightarrow a = c)) \rightarrow a \circ \text{ext} \varepsilon (\neg \varepsilon \circ w \rightarrow a = c)]) = \]
\[(c \circ u \rightarrow \text{anz} (\neg \varepsilon \circ w \rightarrow a = c))) = \text{anz} (\neg \varepsilon \circ u \rightarrow a = c)) \rightarrow \]
\[\text{anz} (\neg (\varepsilon \circ w \rightarrow a = c))) = \text{anz} (\varepsilon \circ u \rightarrow a = c)) \]
\[\vdash \forall a [\alpha \circ u \rightarrow \alpha \circ w] \rightarrow \]
\[(c \circ u \rightarrow (\text{anz } (\text{ext }\epsilon (\sim (c \circ u \rightarrow \epsilon = c)))) = \text{anz } (u) \rightarrow \text{anz } (\epsilon (c \circ w \rightarrow \epsilon = c))) = \text{anz } (\epsilon (w))) \]
\[(\rho) \]
\[(102) : \]
\[\vdash \forall a [\alpha \circ u \rightarrow \alpha \circ w] \rightarrow \]
\[(c \circ u \rightarrow (\text{anz } (\text{ext }\epsilon (\sim (c \circ u \rightarrow \epsilon = c)))) = \text{anz } (u) \rightarrow \text{anz } (w) \circ (\text{anz } (w) \circ \alpha \circ u)))) \]
\[(\sigma) \]
\[(IIa) :: \]
\[\vdash \forall a [\alpha \circ u \rightarrow \alpha \circ w] \rightarrow \]
\[(c \circ u \rightarrow (\text{anz } (\text{ext }\epsilon (\sim (c \circ u \rightarrow \epsilon = c)))) = \text{anz } (u) \rightarrow \text{anz } (w) \circ (\text{anz } (w) \circ \alpha \circ u))) \]
\[(\tau) \]
\[\times \]
\[\vdash \forall a [\alpha \circ u \rightarrow \alpha \circ w] \rightarrow (\sim \text{anz } (\epsilon (\epsilon \circ u \rightarrow \epsilon = c))) = \text{anz } (u) \rightarrow \sim c \circ u) \]
\[(\upsilon) \]
\[S.65 \]

§ 49. Zerlegung.

Um nun einen Satz mit dem Hintergliede \[\vdash \forall a [\alpha \circ u \rightarrow \alpha \circ w] \rightarrow (\sim \text{anz } (\epsilon (\epsilon \circ u \rightarrow \epsilon = c))) = \text{anz } (u) \rightarrow \sim c \circ u \]
zu erhalten, können wir hier von (68) keinen Gebrauch machen, sondern bedürfen des Satzes, \[\vdash \forall a [\alpha \circ u \rightarrow \alpha \circ w] \rightarrow (\sim \text{anz } (\epsilon (\epsilon \circ u \rightarrow \epsilon = c))) = \text{anz } (u) \rightarrow \sim c \circ u \]
den wir zunächst ableiten.

§ 50. Aufbau.

\[\vdash \text{funk } (\alpha \circ u) \]
\[(79) : \]
\[\vdash \text{anz } (\text{ext }\epsilon (\sim (\epsilon \circ u \rightarrow \epsilon = a))) \circ (\text{anz } (\epsilon \circ u \rightarrow \epsilon = a)) \circ (\text{anz } (\epsilon \circ u \rightarrow \epsilon = a)) \circ (\text{anz } (\epsilon \circ u \rightarrow \epsilon = a)) = c) \]
\[(\alpha) \]
\[(103) :: \]
\[\vdash \alpha \circ u \rightarrow (\epsilon \circ (\text{anz } (\epsilon \circ u \rightarrow \epsilon = a))) = c) \]
\[(\beta) \]
\[(IIa) :: \]

\[^{21} \text{Um nun einen Satz mit dem Obergliede} \]

\[^{22} \text{Textkorrektur infolge modernisierter Formelnotation!} \]
(108) ::
\[\vdash \forall a \left(\text{anz} \left(\epsilon \circ u \rightarrow \epsilon = a \right) \right) = e \rightarrow \neg a \circ u \rightarrow (e \circ \text{anz} (u) \circ \text{nf}) \rightarrow \neg (a \circ u \rightarrow \neg a \circ u) \]

\[(\gamma) \]

(97) ::
\[\vdash \forall a \left(\text{anz} \left(\epsilon \circ u \rightarrow \epsilon = a \right) \right) = e \rightarrow \neg a \circ u \rightarrow (e \circ \text{anz} (u) \circ \text{nf}) \rightarrow \neg (\text{anz} (u) = \text{anz} (0)) \]

\[(\zeta) \]

(108) ::
\[\vdash \forall a \left(\text{anz} \left(\epsilon \circ u \rightarrow \epsilon = a \right) \right) = e \rightarrow \neg a \circ u \rightarrow (\neg e \circ \text{anz} (0) \circ \text{nf}) \rightarrow \neg e \circ (\text{anz} (u) \circ \text{nf}) \]

\[(\eta) \]

(475) ::
\[\vdash \forall a \left(\text{anz} \left(\epsilon \circ u \rightarrow \epsilon = a \right) \right) = \text{anz} (u) \rightarrow \neg a \circ u \rightarrow \neg \text{anz} (u) \circ (\text{anz} (u) \circ \text{nf}) \]

\[(474) :: \quad \neg \text{anz} (w) \circ (\text{anz} (w) \circ \text{nf}) \rightarrow \neg \text{anz} (u) \circ (\text{anz} (u) \circ \text{nf}) \]

\[(\epsilon) \]

\[\neg \neg \text{anz} (w) \circ (\text{anz} (u) \circ \text{nf}) \rightarrow \text{anz} (w) \circ (\text{anz} (w) \circ \text{nf}) \]

\[(476) \]

c) Beweise der Sätze

\[\neg \neg \forall a \left[\neg \neg \text{anz} \left(w \circ (a \circ \text{nf}) \right) \right] \]

und

\[\forall a \left[\neg \neg \text{anz} (u) = \infty \rightarrow (\forall a \left[a \circ u \rightarrow a \circ w \right] \rightarrow \neg \text{anz} (0) \circ (\text{anz} (w) \circ \text{nf}) \right] \]
§ 51. Zerlegung.
Um (476) zu benutzen, wie in § 45 gesagt ist, brauchen wir den Satz
\[\vdash \neg c \rightarrow \text{anz}(w) \text{anz}(\text{ext} \epsilon (\neg \epsilon = c \rightarrow \epsilon \varnothing w)) \text{nf} \]
(\(\alpha\))
der aus (103) abzuleiten ist. Dazu haben wir den Satz
\[\vdash \neg c \rightarrow \text{anz}(w) = \text{anz}(\text{ext} \epsilon (\neg (\epsilon \varnothing \epsilon (\neg \epsilon \varnothing c \rightarrow \epsilon \varnothing w) \rightarrow \epsilon = c))) \]
(\(\beta\)) nöthig.

§ 52. Aufbau.

IIIe \[\vdash c = c \]
(\(Ia\))
\[\vdash \neg c = c \rightarrow c \varnothing w \]
(\(\alpha\))
\[\vdash c \varnothing \epsilon (\neg \epsilon = c \rightarrow \epsilon \varnothing w) \]
(\(77\))

IIIId \[\vdash \neg c \varnothing w \rightarrow (a \varnothing w \rightarrow \neg a = c) \]
(\(If\))
\[\vdash (\neg a = c \rightarrow a \varnothing w) \rightarrow (\neg c \varnothing w \rightarrow (a \varnothing w \rightarrow \neg ((\neg a = c \rightarrow a \varnothing w) \rightarrow a = c))) \]
(\(\alpha\))
\[\vdash c \varnothing w \rightarrow (a \varnothing w \rightarrow \neg ((\neg a = c \rightarrow a \varnothing w) \rightarrow a = c)) \]
(\(\beta\))

I \[\vdash (\neg a = c \rightarrow a \varnothing w) \rightarrow (\neg a = c \rightarrow a \varnothing w) \]
(\(Ic, Id\))
\[\vdash (\neg a = c \rightarrow a \varnothing w) \rightarrow a = c \rightarrow a \varnothing w \]
(\(\gamma\))

(\(IVa\))
\[\vdash (a \varnothing w \rightarrow \neg ((\neg a = c \rightarrow a \varnothing w) \rightarrow a = c)) \rightarrow \\
(\neg a \varnothing w) \rightarrow (\neg a \varnothing w \rightarrow a = c)) \]
(\(\delta\))

(\(\beta\))

S.67
\[\vdash c \varnothing w \rightarrow (\neg a \varnothing w) = (\neg ((\neg a = c \rightarrow a \varnothing w) \rightarrow a = c)) \]
(\(\varepsilon\))
\[\vdash c \varnothing w \rightarrow \neg a \varnothing w = (\neg (a \varnothing \epsilon (\neg \epsilon = c \rightarrow \epsilon \varnothing w) \rightarrow a = c)) \]
(\(\zeta\))
\[
\vdash \neg \alpha \varnothing \rightarrow \\
(\neg \alpha \varnothing) = (\neg \alpha \text{ext} \varepsilon (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) (\eta)
\]

\[
\vdash \neg \alpha \varnothing \rightarrow \\
\forall \alpha \neg (\neg \alpha \text{ext} \varepsilon (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) (\vartheta)
\]

\[
(96) : \quad \neg \alpha \varnothing \rightarrow \\
\text{anz} (w) \equiv \text{anz} (\varepsilon \text{ext} (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) (\alpha)
\]

\[
(IIIa) : \quad \neg \alpha \varnothing \rightarrow \\
\text{anz} (w) \equiv (\text{anz} (\varepsilon \text{ext} (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) (\beta)
\]

\[
(103) : \quad \neg \alpha \varnothing \rightarrow (\neg \alpha \text{ext} \varepsilon (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) \varnothing
\]

\[
(477) : \quad \neg \alpha \varnothing \rightarrow \neg \text{anz} (w) = \text{anz} (\varepsilon \text{ext} (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c)))
\]

\[
S.68
\]

\[
\vdash \neg \alpha \varnothing \rightarrow \text{anz} (w) \varnothing (\text{anz} (\varepsilon \text{ext} (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) \varnothing \text{nf} \}
\]

\[
(479)
\]

\[
\vdash \neg \text{anz} (w) \varnothing (\text{anz} (\varepsilon \text{ext} (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) \varnothing \text{nf} \rightarrow \neg \alpha \varnothing
\]

\[
(\alpha)
\]

\[
(IIIa) : \quad \neg \alpha \varnothing \rightarrow \\
\forall \alpha \neg (\neg \alpha \text{ext} \varepsilon (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) \varnothing \text{nf} \rightarrow \neg \alpha \varnothing \rightarrow (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) (\alpha)
\]

\[
(1) : \quad \neg \alpha \varnothing \rightarrow \\
\forall \alpha \neg (\neg \alpha \text{ext} \varepsilon (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) \varnothing \text{nf} \rightarrow (\neg \alpha \text{ext} \varepsilon (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) \varnothing \text{nf} \rightarrow \neg \alpha \varnothing \rightarrow (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) (\gamma)
\]

\[
(476) : \quad \neg \alpha \varnothing \rightarrow \\
\forall \alpha \neg (\neg \alpha \text{ext} \varepsilon (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) \varnothing \text{nf} \rightarrow \neg \alpha \varnothing \rightarrow (\neg \varepsilon = c \rightarrow \varepsilon \varnothing \rightarrow \varepsilon = c))) (\delta)
\]

\[
(IIIc) :
\]

\[
(\epsilon)
\]
§ 53. Zerlegung.

Wir ziehen aus dem Satze (476) mit (145) und (165) noch die Folgerung, dass einem Begriffe keine endliche Anzahl zukommt, wenn einem ihm untergeordneten Begriffe die Anzahl Endlos zukommt.

§ 54. Aufbau.

145 \vdash \text{anz}(0) \circ (\text{anz}(w) \circ \leq_{\text{nf}}) \rightarrow \neg \text{anz}(w) \circ (\text{anz}(w) \circ <_{\text{nf}})
III. Die reellen Zahlen.

a) Grundsätze des Definirens.

1. Grundsatz der Vollständigkeit.

§ 56. Eine Definition eines Begriffes (möglichen Prädikates) muss vollständig sein, sie muss für jeden Gegenstand unzweideutig bestimmen, ob er unter den Begriff falle (ob das Prädikat mit Wahrheit von ihm ausgesagt werden könne) oder nicht. Es darf also keinen Gegenstand geben, für den es nach der Definition zweifelhaft bliebe, ob er unter den Begriff fiel, wenn es auch für uns Menschen bei unserm mangelhaften Wissen nicht immer möglich sein mag, die Frage zu entscheiden. Man kann dies bildlich so ausdrücken: der Begriff muss scharf begrenzt sein. Wenn man sich Begriffe ihrem Umfange nach durch Bezirke in der Ebene versinnlicht, so ist das freilich ein Gleichnis, das nur mit Vorsicht gebraucht werden darf,
hier aber gute Dienste leisten kann. Einem unscharf begrenzten Begriffe würde ein Bezirk entsprechen, der nicht überall eine scharfe Grenzlinie hätte, sondern stellenweise ganz verschwimmend in die Umgebung überginge. Das wäre eigentlich gar kein Bezirk; und so wird ein unscharf definierter Begriff mit Unrecht Begriff genannt. Solche begriffsartige Bildungen kann die Logik nicht als Begriffe anerkennen; es ist unmöglich, von ihnen genaue Gesetze aufzustellen. Das Gesetz des ausgeschlossenen Dritten ist ja eigentlich nur in anderer Form die Forderung, dass der Begriff scharf begrenzt sei. Ein beliebiger Gegenstand \(\Delta \) fällt entweder unter den Begriff \(\Phi \), oder er fällt nicht unter ihn: \textit{tertium non datur}. Hätte z. B. der Satz „jede Quadratwurzel aus 9 ist ungerade“ wohl überhaupt einen fassbaren Sinn, wenn \textit{Quadratwurzel aus 9} nicht ein scharf begrenzter Begriff wäre? Hat die Frage „Sind wir noch Christen?“ eigentlich einen Sinn, wenn nicht bestimmt ist, von wem das Prädikat \textit{Christ} mit Wahrheit ausgesagt werden kann, und wenn es abgesprochen werden muss?

\[\text{§ 57.} \] Hieraus folgt nun die Unzulässigkeit des in der Mathematik so beliebten stückweisigen Definierens. Dies besteht darin, dass man die Definition für einen besonderen Fall giebt — z. B. für den der positiven ganzen Zahlen — und von ihr Gebrauch macht, dann nach manchen Lehrsätzen eine zweite Erklärung folgen lässt für einen anderen Fall — z. B. für den der negativen ganzen Zahlen und der Null — wobei dann oft noch der Fehler gemacht wird, für den schon erledigten Fall noch einmal Bestimmungen zu treffen. Wenn man nun auch thatsächlich Widersprüche vermeiden wird, so schliesst man sie doch durch die Methode nicht grundsätzlich aus. Meistens gelangt man auch nicht zu einem Abschlusse, sondern lässt Fälle übrig, für die man keine Bestimmung trifft; und Manche sind so naiv, auch in diesen Fällen das Wort oder Zeichen zu gebrauchen, als ob sie ihm eine Bedeutung beigelegt hätten. Ein solches stückweises Definiren ist zu vergleichen dem Verfahren, die Grenzlinie eines Flächenstückes in Absätzen zu ziehen, ohne sie vielleicht je in sich zurücklaufen zu lassen. Der Hauptfehler aber ist der, dass man das Zeichen (Wort) schon, bevor es vollständig erklärt hat, benutzt zu Lehrsätzen, vielfach auch zur weiteren Fortsetzung der Erklärung selbst. Ehe ein Wort oder Zeichen seiner Bedeutung nach nicht vollständig erklärt oder sonst bekannt ist, darf es in einer strengen Wissenschaft nicht gebraucht werden, am wenigsten aber dazu, seine eigene Erklärung weiter fortzuführen.

\[\text{§ 58.} \] Nun muss allerdings zugegeben werden, dass die Entwicklung der Wissenschaft, die sich in den Eroberungen immer weiterer Zahlgebiete vollzog, fast unausweichlich zu einem solchen Verfahren nötigte; und diese Nöthigkeit könnte als Entschuldigung dienen.

\(^{22} \) So sagt G. Peano im VI. Thl. der Revue de mathematique, S. 60—61: „Il sig. Frege desidera per ogni segno una sola definizione. E tale è pure la mia opinione se si tratta d’un segno non contenente lettere variabili (\(F_2 \), § 1 P 7). Ma se ciò che si definisce contiene lettere variabili, cioè è una funzione di queste lettere, allora io veggo in generale la necessità di dare di quella espressione delle definizioni condizionate, o definizioni con ipotesi (id. P \(7' \)), e di dare tante definizioni quante sono le specie di enti su cui eseguiamo quella operazione. Così la formula \(a + b \) si definirà una prima volta quando \(a \) e \(b \) sono intieri, poi una seconda quando sono fratti, poi quando sono irrazionali, o complessi. Si incontra lo stesso segno + fra numeri infiniti e transfiniti (\(F_1 \) VI), ed allora se ne deve dare una nuova definizione. Lo si incontra fra due vettori, e si definirà di nuovo, e così via. E col progredire della scienza si estende sempre più il significato della stessa formula. I vari significati della scrittura \(a + b \) hanno proprietà comuni; ma queste sono insufficienti a precisare tutti i valori che può avere quell’ espressione.

Lo stesso avviene per la formula \(a = b \); in alcuni casi il suo significato si può assumere come idea primitiva, in altri la si definisce, e precisamente in aritmetica data l’eguaglianza degli intieri, si definisce l’eguaglianza fra i razionali, fra gli irrazionali, fra i numeri immaginari, ecc. Si suol definire in geometria l’eguaglianza di due aree, di due volumi, l’eguaglianza di due vettori, ecc. Col progredire della scienza si sente sempre più la necessità di estendere il significato della formula \(a = b \). I vari significati \(S.71 \) di essa hanno proprietà comuni; ma io non
zu ersetzen, und die Logik verlangt dies eigentlich; aber dazu entschliesst man sich schwer.
Und diese Scheu, neue Zeichen oder Wörter einzuführen, ist die Ursache vieler Unklarheiten in der Mathematik. Man hätte auch die alten Erklärungen als ungültig aufheben und die Wissenschaft mit den neuen von vorne anfangen können, aber zu einer solchen reinlichen Trennung kam es auch nicht, weil man die alten Definitionen für die Anfänge der Wissenschaft nicht glaubte entbehren zu können. Dabei mögen auch die Bedürfnisse des Unterrichts mitgesprochen haben. So hat man sich denn an dasstückweise Definiren gewöhnt; und was ursprünglich ein misslicher Notbehelf war, wurde üblich und unter die berechtigten Methoden der Wissenschaft aufgenommen, sodass jetzt noch kaum jemand daran Anstoss nimmt, wenn ein Zeichen erst für ein beschränktes Gebiet erklärt und dann gebraucht wird, um dasselbe Zeichen nochmals für ein weiteres Gebiet zu erklären; denn das allgemeine Uebliche hat eine rechtfertigende Kraft, wie ja die Mode der hässlichsten Tracht den Stempel der Schönheit aufzudrücken vermag. Um so mehr muss betont werden: begriffssähnliche Bildungen, die noch im Flusse sind, die noch nicht endgültige und scharfe Grenzen erhalten haben, kann die Logik nicht als Begriffe anerkennen; und darum muss sie alles stückweise Definiren verwerten. Wenn nämlich die erste Definition schon vollständig ist und scharfe Grenzen gezogen hat, so zieht die zweite Definition entweder dieselben Grenzen und ist dann zu verwerfen, weil ihr Inhalt als Lehrsatz zu beweisen wäre, oder sie zieht andere Grenzen und widerspricht damit der ersten. Man kann z. B. den Kegelschnitt definiren als Schnitt einer Ebene mit einer Rotationskegelfläche. Hat man dies einmal gethan, so darf man ihn nun nicht noch einmal definiren, z. B. als eine Curve, deren Gleichung in cartesischen Koordinaten vom zweiten Grade ist; denn das muss nun bewiesen werden. Man kann den Kegelschnitt nun auch nicht als ebenses Gebilde, dessen Gleichung in Linieneinheiten vom zweiten Grade ist; denn hierin wäre auch das Punktepaar enthalten, das nicht als Schnitt einer Ebene mit einer Kegelfläche aufgefasst werden kann. Die Begrenzung des Begriffes ist hier also nicht dieselbe, und es wäre ein Fehler, hier dieselbe Benennung „Kegelschnitt“ zu gebrauchen. Wenn also die zweite Definition durch die erste in keiner dieser beiden Weisen unstatthaft gemacht ist, so ist das nur durch die Unvollständigkeit der ersten möglich, die den Begriff unfertig

veggo come bastino a precisare tutti i significati possibili dell’eguaglianza.

Del resto le opinioni dei vari Autori, sul concetto di eguaglianza, diversificano assai; ed uno studio di questa questione sarebbe assai utile, specialmente se fatto coll’ aiuto di simboli, anziché di parole”.

Peano beruft sich hier auf eine praktische Notwendigkeit; aber dadurch werden die in meinem Briefe an ihn angeführten Gründe nicht widerlegt. Es mag schwer sein, den Anforderungen der Logik beim Definiren immer zu genügen, möglich muss es sein.

Mehrere bedingte Definitionen desselben Zeichens kann man allenfalls dann gelten lassen, wenn aus ihrer Form klar hervorgeht, dass sie zusammen alle möglichen Fälle umfassen und für keinen mehrfache Bestimmungen treffen, und wenn keine dieser Theilerklärungen benutzt wird, bevor sie alle gegeben sind, also auch nicht bei einer andern Theilerklärung. Dann lassen sich diese auch der Form nach in eine einzige Erklärung zusammenziehen. Immerhin wird es besser sein, diese Form des Definirens zu vermeiden, wo es möglich ist.

Was das Gleichheitszeichen betrifft, so werden wir gut thun, bei unserer Festsetzung zu bleiben, wonach die Gleichheit völliges Zusammenfallen, Identität ist. Freilich sind Körper von gleichem Volumen nicht identisch, aber sie haben dasselbe Volumen. Die Zeichen auf beiden Seiten des Gleichheitszeichens dürfen also in diesem Falle nicht als Zeichen für die Körper, sondern für deren Volumina genommen werden, oder auch für die Maßzahlen, die sich bei der Messung durch dieselbe Volumeneinheit ergeben. Wir werden nicht von gleichen Vektoren sprechen, sondern von einer gewissen Bestimmung — nennen wir sie „Richtungsgröße“ — an diesen Vektoren, die bei verschiedenen dieselben sein kann. Bei dieser Auffassung wird der Fortschritt der Wissenschaft nicht eine Ausdehnung der Bedeutung der Formel \(a = b \) erfordern, sondern es werden nur neue Bestimmungen (modi) an den Gegenständen der Betrachtung unterworfen werden.

In dem letzten Satze spricht Peano ein grosses Wort gelassen aus. Wenn die Meinungen der Mathematiker über die Gleichheit von einander abweichen, so heisst das nichts weniger, als dass die Mathematiker über den Inhalt ihrer Wissenschaft uneinig sind; und wenn man das Wesen der Wissenschaft in Gedanken, nicht in Worten und Zeichen sieht, so heisst es, dass es keine einheitliche mathematische Wissenschaft gibt, dass die Mathematiker einander in Wahrheit garnicht verstehen. Denn der Sinn fast aller arithmetischen Sätze und vieler geometrischer hängt unmittelbar oder mittelbar von dem Sinne des Wortes „gleich“ ab.
gelassen hat, in einem Zustande also, in dem er garnicht gebraucht werden darf, insbesondere auch nicht zu Definitionen.

§ 59. Es wird nicht unnütz sein, der Abstraktheit dieser Ueberlegungen ein Gegenge wicht in einem Beispiele zu geben. E. Heine stellt folgende Definition auf:

„Zahlzeichen heissen gleich oder sind vertauschbar, wenn sie zu gleichen, ungleich oder nicht vertauschbar, wenn sie zu ungleichen Zahlenreihen gehören (§ 1 Def. 3)"

Was würde man zu folgender Definition sagen:

„Zeichen heissen weiss, wenn sie zu weissen Gegenständen gehören“?

Es ist mir doch erlaubt, als Zeichen des vor mir liegenden weissen Papierblattes einen kreisrunden schwarzen Fleck zu nehmen, falls ich dies Zeichen nicht schon anders verwendet habe. Und ein solcher Fleck wäre nun nach der Definition weiss. Hiergegen ist zu sagen: Die Definition setzt durch den Ausdruck „wenn sie zu weissen Gegenständen gehören“ die Bedeutung des Wortes „weiss“ als bekannt voraus; denn wäre sie es nicht, so wäre garnicht bestimmt, welche Zeichen zu weissen Gegenständen gehörten. Nun gut! Ist das Wort „weiss“ bekannt, so kann man es nicht noch erklären wollen. Man sollte es doch als ganz selbstverständlich ansehen, dass man ein Wort nicht durch sich selbst erklären darf, weil man es dann in einem Athem als bekannt und als unbekannt behandelt. Wenn es bekannt ist, so ist eine Erklärung mindestens überflüssig, wenn es aber nicht bekannt ist, kann es nicht zur Erklärung dienen. Dies ist so ein- leuchtend, und doch wird so oft dagegen gefehlt! Bei Heines Definition haben wir denselben Fall. Mit den Worten „wenn sie zu gleichen Zahlenreihen gehören“ wird als bekannt vorausgesetzt, was das Wort „gleich“ bedeute, und dieses selbe Wort soll erklärt werden.

§ 60. Heine würde dagegen wahrscheinlich bemerken, dass die Bedeutung des Wortes „gleich“ nicht für alle Fälle als bekannt vorausgesetzt, sondern in seiner Def. 3 in § 1 nur für nicht eingeklammerte Zahlenreihen angegeben sei, während er hier von eingeklammer ten Zahlenreihen und andern Zeichen spreche. Ausser den schon angeführten Gründen ist hiergegen zu sagen, dass eine zwiefache Erklärung eines Zeichens oder Wortes vom Uebel ist, weil dabei der Zweifel bleibt, ob diese Definitionen einander nicht widersprechen. Es müsste wenigstens ein Beweis verlangt werden, dass kein Widerspruch bestehe; aber dieser Verpflichtung entzieht man sich regelmäßig, wie denn auch bei Heine keine Spur eines solchen Beweises zu finden ist. Es ist überhaupt eine solche Weise des Definirens zu verwerfen, bei welcher die Rechtmässigkeit einer Definition von einem vorher zu führenden Beweise abhängig wird; denn dadurch wird es ausserordentlich verschwert, die Strenge der Beweisführung nachzuprüfen, weil dann bei jeder Definition eine Untersuchung nöthig ist, ob vor ihrer Aufstellung irgendwelche Sätze zu beweisen seien; eine Untersuchung, die dann doch fast immer unterbleibt. Eine solche Lücke wird eben fast nie gefühlt und ist dadurch für die Strenge besonders gefährlich. Es genügt eben in der Arithmetik nicht, irgendeine Behauptung aufzustellen ohne Beweis oder mit einem Scheinbeweise und nun abzuwarten, ob es jemandem gelingt, ihre Falschheit nachzuweisen, sondern umgekehrt muss verlangt werden, dass jede nicht ganz selbstverständliche Behauptung wirklich bewiesen werde, und dazu gehört, dass die dabei gebrauchten Ausdrücke oder Zeichen einwandfrei eingeführt seien, sofern sie nicht als allgemein bekannt angesehen werden dürfen.

Und es ist überdies so leicht, mehrfache Erklärungen desselben Zeichens zu vermeiden.

Statt es zuerst für ein beschränkteres Gebiet zu erklären und es dann zu benutzen, um es selbst für ein weiteres Gebiet zu erklären, statt also zweimal das gleiche, braucht man ja nur verschiedene Zeichen zu wählen, indem man die Bedeutung des ersten endgültig auf das engere Gebiet einschränkt, sodass nun auch die erste Definition vollständig ist und scharfe Grenzen zieht. Dann ist die logische Beziehung zwischen den Bedeutungen der beiden Zeichen nicht irgendwie präjudiziert und mag untersucht werden, ohne dass durch den Ausfall dieser Untersuchung die Rechtmäßigkeit der Definitionen in Frage gestellt werden kann. Es ist doch wahrhaftig der Mühe werth, ein neues Zeichen zu erfinden, wenn dadurch nicht geringe logische Bedenken gehoben und die Strenge der Beweise gesichert werden kann. Aber der Sinn für die logische Reinlichkeit und Genauigkeit scheint bei manchen Mathematikern so gering zu sein, dass sie lieber ein Wort in drei oder vier Bedeutungen gebrauchen, als den ungeheuren Entschluss fassen, ein neues Wort zu erfinden.

Grade bei der Grösserbeziehung gehört das stückweise, also unvollständige Definieren so zu sagen zum guten Ton in der Mathematik. Man erklärt den Ausdruck „grösser als“ zunächst im Gebiete der positiven ganzen Zahlen, also unvollständig. Die so gewonnene Scheinbeziehung, die gar nicht gebraucht werden darf, wird dann doch benutzt, um die erste Definition zu ergänzen, wobei wohl nicht immer erkennbar ist, wann die Definition der Grösserbeziehung als abgeschlossen gelten soll. Ganz ähnlich liegt der Fall bei der Gleich-
heitsbeziehung; auch hier gehört das stückweise Definiren durchaus zum guten Ton. Nichtsdestoweniger müssen wir dabei bleiben: ohne vollständige und endgültige Definitionen hat man keinen festen Boden unter den Füßen, ist man der Geltung seiner Lehrsätze nicht sicher, kann man nicht zuversichtlich die logischen Gesetze anwenden, die ja die scharfe Begrenzung der Begriffe und also der Beziehungen zur Voraussetzung haben.

§ 63. Hier schliesst sich leicht eine Folgerung an, die solche Functionen betrifft, welche weder Begriffe noch Beziehungen sind. Als Beispiel nehmen wir den Ausdruck „die Hälft von etwas“, der sich als Name einer solchen function darstellt. Das Wort „etwas“ hält dabei die Stelle für den Argumentnamen offen entsprechend dem Buchstaben »ξ« in »½ ξ«. Ein solcher Ausdruck kann nun Theil eines Begriffnemens werden, z. B. von „etwas, dessen Hälfte kleiner als Eins ist“.

Wenn dieser nun wirklich einen scharf begrenzten Begriff bedeuten soll, dann muss z. B. auch für den Mond bestimmt sein, ob seine Hälft kleiner als Eins ist. Damit dies aber stattfinde, muss der Ausdruck „die Hälft des Mondes“ eine Bedeutung haben; d. h. es muss einen Gegenstand und nur einen einzigen geben, der hierdurch bezeichnet wird. Das ist nun nach dem gemeinen Sprachgebrauche nicht der Fall, weil niemand weiss, welche Hälft des Mondes gemeint sei. Hier ist also eine genauere Festsetzung zu treffen der Art, dass für jeden Gegenstand bestimmt wird, welcher Gegenstand die Hälfte von ihm sei; sonst darf man den Ausdruck „die Hälfte von x“ mit dem bestimmten Artikel nicht gebrauchen. So muss also eine Function erster Stufe mit einem Argumente immer so beschaffen sein, dass sich ein Gegenstand als ihr Werth ergiebt, welchen Gegenstand man auch als ihr Argument nehmen — durch welchen Gegenstand man auch die Function sättigen — möge 25.

§ 64. Das Entsprechende haben wir auch von den Functionen mit zwei Argumenten zu fordern. Der Ausdruck „die Summe eines ersten und eines zweiten Gegenstandes“ stellt sich als Name einer solchen Function dar. Es muss also auch hier für jeden ersten und für jeden zweiten Gegenstand bestimmt sein, welcher Gegenstand die Summe des ersten und zweiten sei, und einen solchen muss es immer geben. Ist das nicht der Fall, so ist auch nicht bestimmt, welcher Gegenstand zu sich selbst addirt Eins er gebe. Mithin bedeuten dann die Worte „etwas, was zu sich selbst addirt Eins ergiebt“ keinen scharf begrenzten Begriff, also überhaupt nichts logisch Brauchbares. Und die Frage, wieviel Gegenstände es gebe, die zu sich selbst addirt Eins ergeben, ist unbeantworbar.

Aber kann man nicht festsetzen, dass der Ausdruck „die Summe eines ersten und eines zweiten Gegenstandes“ nur dann eine Bedeutung haben solle, wenn beide Gegenstände Zahlen seien? Dann sei doch, meint man wohl, etwas, was zu sich selbst addirt Eins ergiebt ein scharf begrenzter Begriff; denn man wisse nun, dass kein Gegenstand unter ihn falle, der keine Zahl sei. Es falle z. B. der Mond nicht darunter, da die Summer des Mondes und des Mon-

24In der Praxis ihrer Beweise behandeln wohl alle Mathematiker die Gleichheit als Identität, obwohl die meisten es in der Theorie nicht wahr haben wollen. Aber niemand wird z. B. sagen, die Gleichung »4 · x − 3 = 5« habe die Wurzeln »½ und ½, weil zwar »½ = ½ sei, aber »½ nicht mit ½ zusammenfalle. Fallen sie nicht zusammen, so sind sie verschieden, und unsere Gleichung hat mindestens zwei verschiedene Wurzeln. Es ist merkwürdig zu sehen, welcher greller Widerstreit bei vielen Mathematikern zwischen ihrer ausgesprochenen Theorie und ihrer stillschweigend geübten Praxis besteht. Wenn aber die Gleichheit in der Mathematik Identität ist, so ist deren vielfache Definition vollends ein unsinniges Verfahren.

des nicht Eins sei. Dies ist falsch; denn der Satz „die Summe des Mondes und des Mondes ist Eins“ ist nun weder wahr noch falsch; in beiden Fällen nämlich müssten die Worte „die Summe des Mondes und des Mondes“ etwas bedeuten, was durch die vorgeschlagene Festsetzung ausdrücklich verneint wird. Unser Satz wäre etwa zu vergleichen dem Satze „die Skylla hatte sechs Drachenschlünde“. Auch dieser Satz ist weder wahr noch falsch, sondern Dichtung, weil der Eigennamen „Skylla“ nichts bezeichnet. Solche Sätze können zwar Gegenstände einer wissenschaftlichen Betrachtung sein, z. B. einer mythologischen, aber es kann sich in ihnen keine wissenschaftliche Untersuchung vollziehen. Wenn unser Satz „die Summe des Mondes und des Mondes ist nicht Eins“ ein wissenschaftlicher wäre, so besaße er, dass die Bedeutung der Worte „die Summe des Mondes und des Mondes“ nicht zusammenfalle mit der Bedeutung des Wortes „Eins“; aber jene Bedeutung wäre bei der vorgeschlagenen Festsetzung nicht vorhanden. Folglich könnte man von ihr wahrheitsgemäß weder aussagen, dass sie mit der Bedeutung von „Eins“ zusammenfälle, noch auch, dass sie nicht mit ihr zusammenfälle. Die Frage also, ob die Summe des Mondes und des Mondes Eins sei, oder ob der Mond unter den Begriff etwas, was zu sich selbst addirt Eins ergiebt falle, wäre unbeantwortbar; mit andern Worten: was wir eben Begriff genannt, wäre gar kein eigentlicher Begriff, weil die scharfe Begrenzung fehlte. Hat man aber einmal den Ausdruck „a zu b addirt ergiebt c“ eingeführt, so kann man die Bildung eines Begriffsnamens, wie „etwas, was zu sich selbst addirt Eins ergiebt“ nicht mehr verhindern. Wollte man nun wirklich versuchen, durch eine Gesetzgebung die Bildung solcher unzulässigen, wiewohl sprachlich möglichen Begriffsnamen sicher zu verhindern, so würde man das bald als übermässig schwierig und wahrscheinlich undurchführbar aufgeben. Der einzig gangbare Weg ist der, die Wörter „Summe“ und „addiren“ und andere, falls man sie überhaupt gebrauchen will, so zu erklären, dass die mit ihnen sprachlich richtig gebildeten Begriffsnamen scharf begrenzte Begriffe bedeuten, und also zulässig sind.

So ist denn auch die hier von uns aufgestellte Forderung, dass jede Funktion erster Stufe mit zwei Argumenten für jeden ersten Gegenstand als erstes, und für jeden zweiten Gegenstand als zweites Argument einen Gegenstand als Werth habe, die Folge davon, dass die Begriffe scharf begrenzt sein müssen, dass keine Ausdrücke geduldet werden dürfen, die ihrem Baue nach einen Begriff zu bedeuten scheinen, aber einen solchen nur vortäuschen, wie auch Eigennamen unzulässig sind, die nicht wirklich einen Gegenstand bezeichnen.

§ 65. Was von den Ausdrücken in Worten gesagt ist, gilt auch von den arithmetischen Zeichen. Wenn das Additionszeichen vollständig erklärt ist, so haben wir in

\[\xi + \xi = \zeta \]

den Namen einer Beziehung, der des Einfachen zum Doppelten. Ist das nicht der Fall, so wird man nicht sagen können, ob die Gleichung

\[x + x = 1 \]

eine einzige oder mehrere Lösungen habe. Nun wird jemand antworten: ich verbiete, dass etwas anderes als Zahlen überhaupt in Betracht gezogen werde. Einen ähnlichen Einwand haben wir oben behandelt; hier mag die Sache noch von andern Seiten beleuchtet werden. Wer alle Gegenstände von der Betrachtung ausschliessen will, die nicht Zahlen sind, der wird zunächst sagen müssen, was er unter „Zahl“ verstehe, und eine Erweiterung ist dann nicht mehr zulässig. Eine solche Beschränkung müsste in die Erklärung aufgenommen werden, sodass sie etwa die Form annähme: „Wenn a und b Zahlen sind, so bedeutet \(a + b \) u. s. w. Wir hätten eine bedingte Erklärung. Aber das Additionszeichen ist nur erklärt, wenn die Bedeutung jeder möglichen Zeichenverbindung von der Form \(a + bx \) bestimmt ist, welche

bedeutungsvolle Eigennamen man auch für »a« und für »b« einsetzen möge. Wenn man aber solche Zeichenverbindungen z. B. nur für den Fall erklärt, dass für »a« und für »b« Zeichen reeller ganzer Zahlen genommen werden, so hat man eigentlich nur solche Verbindungen erklärt, nicht aber das Additionszeichen und hat dabei gegen den noch zu behandelnden zweiten Grundsatz des Definirens verstossen. Und doch bildet man sich nun unwillkürlich ein, die Bedeutung des Additionszeichens sei bekannt, und behandelt es demgemäß auch in solchen Fällen, für die keine Erklärung gegeben ist.

\[a + b = b + a \]

die Bedingungen hinzuzudenken, dass \(a \) und \(b \) Zahlen seien; und diese werden, weil nicht ausgesprochen, leicht in Vergessenheit gerathen. Aber nehmen wir uns einmal vor, diese Bedingungen nicht zu vergessen! Nach einem bekannten Gesetze der Logik können wir den Satz

„wenn \(a \) eine Zahl ist und wenn \(b \) eine Zahl ist, so ist \(a + b = b + a \)“

umwandeln in den Satz

„wenn \(a + b \) nicht gleich \(b + a \) ist, und wenn \(a \) eine Zahl ist, so ist \(b \) keine Zahl“;

und hier ist es unmöglich, die Beschränkung auf’s Gebiet der Zahlen aufrecht zu erhalten. Der Zwang der Sachlage arbeitet unwiderstehlich auf die Durchbrechung solcher Schranken hin. Dann aber hat unser Bedingungssatz

„wenn \(a + b \) nicht gleich \(b + a \) ist“

bei der unvollständigen Erklärung des Additionszeichens keinen Sinn.

Alles dies hängt auf’s Engste mit einander zusammen und kann als Ausfluss des Grundsatzes der Vollständigkeit der Definitionen angesehen werden.

2. Grundsatz der Einfachheit des erklärten Ausdrucks

§ 66. Dass durch die Bedeutung eines Ausdrucks und eines seiner Theile die Bedeutung des übrigen Theils nicht immer bestimmt ist, leuchtet ein. Man darf also ein Zeichen oder Wort nicht dadurch erklären, dass man einen Ausdruck erklärt, in dem es vorkommt, während

28 Denkt man z. B. bei der Erweiterung des Zahlengebietes wohl immer daran, dass damit jene Bedingungen dem Sinne nach geändert werden, dass alle bis dahin bewiesenen allgemeinen Sätze einen andern Gedankeninhalt gewinnen, dass auch die Beweise hinfällig werden?
29 Es versteht sich von selbst, dass gewisse Functionen wegen ihrer logischen Einfachheit nicht definiert werden können; aber auch diese müssen für alle Argumente Werthe haben.
30 Bd. I, § 33, 3.
die übrigen Theile bekannt sind. Denn es wäre erst eine Untersuchung nöthig, ob die Auflösung für die Unbekannte — ich bediene mich eines wohl verständlichen algebraischen Bildes — möglich sei, und ob die Unbekannte eindeutig bestimmt werde. Es ist aber, wie oben schon gesagt, unhöhnlich, die Rechtmässigkeit einer Definition von dem Ausfall einer solchen Untersuchung abhängig zu machen, die überdies vielleicht gar nicht einmal durchführbar wäre. Vielmehr muss die Definition den Charakter einer für die Unbekannte aufgelösten Gleichung haben, auf deren anderer Seite nichts Unbekanntes mehr vorkommt.

Noch weniger geht es an, mit einer einzigen Definition zweierlei zu erklären, sondern jede Definition muss ein einziges Zeichen enthalten, dessen Bedeutung durch sie festgesetzt wird. Man kann ja auch nicht mit einer einzigen Gleichung zwei Unbekannte bestimmen.

Es kommt auch vor, dass man ein ganzes System von Definitionen aufstellt, deren jede mehrere zu erklärende Worte enthält, sodass jedes dieser Worte in mehreren Definitionen vorkommt. Dies gleicht einem System von Gleichungen mit mehreren Unbekannten, wobei dann wieder die Auflösbarkeit und die Eindeutigkeit der Bestimmung völlig fraglich bleibt.

Zwar kann man jedes Zeichen, jedes Wort als aus Theilen bestehend ansehen; aber nur dann sprechen wir ihm die Einfachheit ab, wenn nach den allgemeinen Regeln der Grammatik oder der Zeichengebung aus den Bedeutungen der Theile die Bedeutung des Ganzen folgen würde, und wenn diese Theile auch in andern Verbindungen vorkommen und als selbständige Zeichen mit eigener Bedeutung behandelt werden. In diesem Sinne also kann man sagen: der erklärte Ausdruck — das erklärte Zeichen — muss einfach sein. Sonst könnte es vorkommen, dass die Theile auch einzeln erklärt würden und dass diese Erklärungen der des Ganzen widersprächen.

Ohne zu meinen, hiermit eine vollständige Uebersicht über Alles gegeben zu haben, was beim Definirens zu beachten ist, will ich mich mit der Darlegung dieser beiden Grundsätze begnügen, gegen die von den Mathematikern am meisten gefehlt wird.

b) Cantors Lehre von den Irrationalzahlen.

31Bd. I, § 33, 5.
§ 68. G. Cantor definirt\(^{32}\) zunächst seine Fundamentalreihe:

„Jede derartige Menge\(^{33}\) \((a_\nu)\), welche durch die Forderung \(\lim_{\nu=\infty}(a_{\nu+\mu} - a_\nu) = 0\) (bei beliebig gelassenem \(\mu\)) charakterisirt werden kann, nenne ich eine Fundamentalreihe und ordne ihr eine durch sie zu definirende Zahl \(b\) zu”.

§ 69. Nun sagt Cantor weiter:

„Eine solche Fundamentalreihe bietet . . . drei Fälle dar; entweder es sind ihre Glieder \((a_\nu)\) für hinreichend grosse Werthe von \(\nu\) kleiner ihrem absoluten Betrage nach als eine beliebig vorgegebene Zahl; oder es sind dieselben von einem gewissen \(\nu\) an grösser als eine bestimmte angebbare rationale Zahl \(\rho\); oder sie sind von einem bestimmten \(\nu\) an kleiner als eine bestimmte angebbare negative rationale Grosse \(-\rho\). In dem ersten Falle sage ich, dass \(b\) gleich Null, im zweiten, dass \(b\) grösser als Null oder positiv, im dritten, dass \(b\) kleiner als Null oder negativ sei.”

\(^{33}\) Menge von rationalen Zahlen.

\(^{34}\) Wir haben uns für das Zweite entschieden.

Gewiss! Ein Zeichen kann nie ein Begriff werden. Aber man braucht vielleicht nicht anzunehmen, dass Cantor so Zeichen und Bezeichnetes verwirrt habe. Dennoch liegt wohl etwas Wahres in diesem Einwande, wenn man ihn so formt, dass die Zahlreihen trotz aller Benennungen, die ihnen durch verschiedene Definitionen zugelegt werden, keine Quantitäten werden.

§ 71. Illigens meint ferner, wenn $\sqrt{2}$ als blosses Zahlreihezeichen (für die Reihe 1.4, 1.41, 1.414, ...) gefasst würde, so hätten wir auf der linken Seite die Gleichung $(\sqrt{2})^2 = 2$ nur ein Zeichen für die Zahlreihe 1.4, 1.41, 1.414, ... Ein solches Zeichen aber, als welches jedes beliebige Ding gewählt werden könne, der durch die Zahl 2 bezeichneten Quantität gleichzusetzen, könne wohl niemandem in den Sinn kommen. Dieser Einwand ist nur berechtigt, wenn Cantor das Zeichen mit dem Bezeichneten verwechselt, was erst nachzuweisen ist. Wenn man das Gleichheitszeichen zwischen andern Zeichen schreibt, so setzt man damit nicht das links stehende Zeichen gleich der Bedeutung des rechts stehenden, sondern man setzt die Bedeutung des links stehenden gleich der Bedeutung des rechts stehenden Zeichens. Hier würde also etwa eine Zahlreihe der Bedeutung des Zahlzeichens $\sqrt{2}$, d. h. der Zahl 2, gleichgesetzt. Die Berechtigung hierzu wäre zu untersuchen.

Man kann gegen Cantor allerdings den Vorwurf erheben, dass er diese Prüfung unterlassen hat und das, was eigentlich bewiesen werden sollte, durch eine Pseudodefinition festsetzen will. Die Fundamentalreihe 1.4, 1.41, 1.414, ..., muss bei Cantor als etwas Bekanntes vorausgesetzt werden, ebenso die Zahl 2 und die Bedeutung des Wortes „gleich“. Ob also jene Fundamentalreihe gleich der Zahl 2 sei, kann nicht Gegenstand einer willkürlichen Festsetzung sein, sondern muss sich ergeben. Dieser Einwand gilt freilich nur unter der Voraussetzung, dass der hier angenommene Sinn von Cantors Lehre richtig ist. Später werden wir noch eine andere Auffassungsweise versuchen müssen.

Illigens meint ferner, dass man bei Cantors Theorie nicht sagen könne, was eine Linie von $\sqrt{2}$ Meter Länge sei.

Es liegt gewiss viel Wahres in diesen Einwänden; aber es würde deutlicher hervortreten, wenn Illigens das Wort „Zahl“ nicht in der Bedeutung Zahlzeichen gebrauchte und wenn er

überhaupt Zahl und Zahlzeichen schärfer unterschiede; denn wenn er von rationalen Zahlen spricht und eine Zahl größer als eine andere nennt, so passt das nicht zu der Bedeutung Zahlzeichen. Die Gefahr einer solchen Ungenauigkeit liegt immer vor, wenn man unter „Zahl“ nicht die Bedeutung eines Zahlzeichens, sondern dieses selbst versteht; denn es ist einmal feststehende Meinung, dass die Gegenstände der Arithmetik Zahlen seien. Dann liegt es immer nahe, die Zahlzeichen aus blossen Hilfsmitteln arithmetischer Forschung zu deren Gegenständen zu machen und dadurch eine bedenkliche Verwirrung anzurichten.

Zweitens scheint es mir bedenklich, wenigstens Missverständnissen ausgesetzt, dass Illegens rationale Zahlen Quantitätszeichen nennt und von ihnen sagt, sie bezeichnen Quantitäten. Nach dem Sprachgebrauche nennt man wohl Längen, Flächen, Winkel, Zeiträume, Massen, Kräfte Quantitäten. Ist es wohl nun richtig zu sagen, die Zahl \(\frac{2}{3} \) oder das Zahlzeichen » \(\frac{2}{3} \) « bezeichne eine gewisse Länge, oder einen gewissen Winkel oder gar beides?

§ 72. A. Pringsheim meint\(^{37}\), dass die rationalen Zahlen als Zeichen erscheinen, die wohl bestimmte Quantitäten vorstellen können, aber nicht müssen. Offenbar versteht auch dieser Schriftsteller unter rationalen Zahlen gewisse mit einem Schreibmittel auf einer Schreibfläche oder durch Buchdruck künstlich hergestellte Figuren. Nun: entweder sind diese Figuren für die Arithmetik nichts weiter als Figuren; dann ist es für diese Wissenschaft gleichgültig, welche Vorstellungen etwa jemand noch damit verbinden möge, wenn er nur, sofern er Arithmetik treibt, diese Vorstellungen aus dem Spiele lässt. Ebenso gleichgültig wäre dies für die Arithmetik, wie es für die Geometrie gleichgültig wäre, ob etwa jemand mit einer Dreiecksfigur die Vorstellung eines Elephants verbünde, wenn er nur in der Geometrie gänzlich davon absähe. Man mag nun zwar sagen „ein Dreieck kann zwar einen Elephants vorstellen, muss es aber nicht“; die Einsicht in das Wesen der Geometrie oder des Dreiecks würde dadurch aber kaum gefördert werden. Oder die von Pringsheim rationale Zahlen genannten Figuren sind Zeichen für etwas, die zum Ausdruck arithmetischer Gedanken dienen sollen, wie etwa das Zeichen » \(\dot{\lambda} \) « von den Astronomen gebraucht wird, um den Jupiter zu bezeichnen. Wie sonderbar wäre es nun zu sagen, jenes Zeichen könne den Jupiter bezeichnen, müsse es aber nicht! Der Astronom wird einfach sagen: „ich bezeichne mit dem Zeichen » \(\dot{\lambda} \) « den Jupiter“, und damit wird die Sache abgemacht sein; alles weitere Gerede über diese Zeichen ist dann überflüssig. Also: entweder ist es für die Arithmetik wesentlich, dass die Zahlzeichen etwas bedeuten; dann ist das, was sie bedeuten, die Hauptsache, der Gegenstand der Betrachtung und sie selbst nur Hilfsmittel, von denen nicht viele Worte zu machen sind; oder die Zahlzeichen sind selbst die Gegenstände der Arithmetik; dann ist es gleichgültig, ob dieser oder jener mit ihnen noch eine Bedeutung verbindet, und in der Arithmetik braucht davon nicht die Rede zu sein. Im ersten Falle bezeichnen die Zahlzeichen eben einfach etwas, nämlich Zahlen; im zweiten Falle bezeichnen sie wenigstens in der Arithmetik nichts. In keinem Falle kann aber in dem Satze, dass die Zahlzeichen Quantitäten vorstellen können, aber nicht müssen, irgendeines Entscheidendes oder Aufklärendes gefunden werden.

§ 73. Was ist denn nun eigentlich an der Behauptung, dass die Zahlzeichen Quantitäten bezeichnen? Sehen wir auf die Anwendungen arithmetischer Gesetze in der Geometrie, Astronomie, Physik! In der Tat kommen hier die Zahlen in Verbindung mit Grössen, wie

\(^{36}\) Es besteht freilich auch eine Meinung, nach der die Zahlen weder Zeichen sind, die etwas bedeuten, noch auch unsinnliche Bedeutungen solcher Zeichen, sondern Figuren, die nach gewissen Regeln gehandhabt werden, etwa wie Schachfiguren. Danach sind die Zahlen weder Hilfsmittel der Forschung noch Gegenstände der Betrachtung, sondern Gegenstände der Handhabung. Das wird später zu prüfen sein.

Wenn Illigens unter seinem Worte „Quantitäten“ Größenvverhältnisse oder, was wir nun als gleichbedeutend ansehen, reelle Zahlen versteht und meint, dass Zahlreihezeichen keine Größenverhältnisse nach Cantor bezeichnen, so hat er recht. In Cantors Definition kommt nur die Fundamentalreihe und die Zahl b vor und diese ist das Zahlreihezeichen. Von einem Größenverhältnisse ist dabei gar nicht die Rede. Das Zahlreihezeichen bezeichnet eben die Fundamentalreihe und darf schon deshalb nicht auch ein Größenverhältnis bezeichnen; dann wäre es ja zweideutig.

§ 74. Cantors Antwort 40 auf Illigensens Einwürfe ist leider kurz und unklar ausgefallen. Wir erfahren nicht sicher, ob Illigens mit seiner Annahme recht habe, dass die Zahlen b, b' u. s. w. Zeichen seien, und ob sie Fundamentalreihen bezeichnen, was zu wissen doch am nöthigsten ist, um Klarheit in die Sache zu bringen. Statt dessen wird Zeichen und Bezeichnetes durcheinander geworfen. Cantor schreibt: | „Es ist aber weder von mir noch von Andern jemals behauptet worden, dass die Zeichen b, b', b'' ... concrete Grössen im eigentli-

39 Den Ausdruck „benannte Zahl“ möchte ich verbannen, da er nur Verwirrung stifft
40 Math. Annalen XXXIII, S. 476.
chen Wortsinne seien. Als abstracte Gedankendinge sind sie nur Grössen im uneigentlichen oder übertragenen Sinne des Wortes." Hier werden b, b' u. s. w. zwar Zeichen, zugleich aber abstracte Gedankendinge genannt. Es gehört wirklich ein starker Glaube dazu, Zeichen, die etwa mit Kreide auf eine Tafel oder mit Tinte auf Papier geschrieben werden, die man mit seinen leiblichen Augen sehen kann, für abstracte Gedankendinge zu halten, solcher Glaube, welcher Berge versetzen und Irrationalzahlen schaffen kann.

Wahrscheinlich meint Cantor, dass die Zeichen b, b' u. s. w. abstracte Gedankendinge bezeichnen sollen. Wir können zwischen physischen und logischen Gegenständen unterscheiden, womit freilich keine erschöpfende Einheitung gegeben werden soll. Jene sind im eigentlichen Sinne wirklich; diese sind es nicht, aber darum nicht minder objectiv; sie können zwar nicht auf unsere Sinne wirken, aber durch unsere logischen Fähigkeiten erfasst werden. Solche logische Gegenstände sind unsere Anzahlen; und es ist wahrscheinlich, dass auch die übrigen Zahlen dazu gehören. Wenn nun Cantor unter dem Ausdruck „abstractes Gedankending“ das versteht, was wir logischen Gegenstand nennen, so scheint in der Sache gute Uebereinstimmung zwischen uns zu bestehen. Nur schade, dass diese abstracten Gegenstände in Cantors Erklärungen gar nicht vorkommen! Wir haben Fundamentalreihen und Zeichen b, b' u. s. w. Diese können wir beim besten Willen nicht für abstracte Gedankendinge halten, und auch die Fundamentalreihen können nicht damit gemeint sein. Wenn also die abstracten Gedankendinge die Hauptsache sind, so fehlt eben die Hauptsache in Cantors Definitionen. Welches abstracte Gedankending soll etwa mit dem Zeichen $\sqrt{2}$ bezeichnet werden? Wir erfahren es nicht. Wir tasten an unwesentlichen Aeusserlichkeiten herum und lassen uns den Kern entschlüpfen.

§ 75. Für entscheidend erklärt es dabei Cantor, dass man mit Hülfe dieser abstracten Grössen b, b', b'' ... eigentliche concrete Grössen, z. B. geometrische Strecken quantitativ genau zu bestimmen im Stande sei. Also weit davon entfernt, blos eine angenehme Zugabe zu sein, ist die Anwendung auf Geometrie entscheidend. Aber, wenn sie entscheidend ist, so ist sie es gegen Cantors Theorie, weil dies Entscheidende in der Definition der Zahlgröße gar nicht vorkommt. Erst nachdem die b, b', b'' ... eingeführt sind, wird die Bestimmung der Entfernungen durch Zahlgrössen gegeben 41. Jene Einführung der Zahlgrössen ist rein arithmetisch, enthält aber das Entscheidende nicht; diese Angabe, wie Entfernungen durch Zahlgrössen bestimmt werden können, enthält das Entscheidende, ist aber nicht rein arithmetisch. Und damit wird doch wohl das Ziel verfehlt, das Cantor sich gesetzt hat. In jener Definition hat man die Fundamentalreihen einerseits und die Zeichen b, b', b'' ... anderseits, weiter nichts. Anders läge die Sache, wenn wir eine rein arithmetische oder logische Definition von Verhältnis 42 hätten, aus der auch zu entnehmen wäre, dass es Verhältnisse und unter ihnen irrationale gäbe. Dann läge das Entscheidende in dieser Definition, und die Bestimmung einer Entfernung durch eine Einheit und ein Verhältnis (reelle Zahl) hätte nur den Rang eines erläuternden Beispiels, das auch wegfallen könnte.

42 Die nichtsnutzigen arithmetischen Verhältnisse sind natürlich nicht gemeint.
„Dies drücken wir dadurch aus, dass wir sagen: Die Entfernung des zu bestimmenden Punktes von dem Punkte o ist gleich b, wo b die der Reihe (1)45 entsprechende Zahlengrösse ist.“

Hier ist zunächst der Fehler zu bemerken, dass die Einheit in dem erklärten Ausdrucke garnicht erwähnt wird, obwohl sie nothwendig zur Bestimmung ist. Hieraus kann der trügerische Schein entstehen, als ob b, b', b''... Entfernungen wären, während es sich doch nur um Verhältnisse handeln kann, die ebenso gut bei Stromstärken, mechanischen Arbeiten u. s. w. vorkommen können. Doch das liess sich wohl verbessern. Aber welcher Ausdruck soll eigentlich erklärt werden? Was die Entfernung eines Punktes von einem Punkte ist, muss als bekannt vorausgesetzt werden, die sogenannten Zahlengrössen (b) sind eben eingeführt worden, und das Wort „gleich“ wird doch auch schon bekannt sein. Damit ist Alles in dem erklärten Ausdrucke bekannt, und wenn die Sache in Ordnung wäre, so müsste der Sinn des Satzes „Die Entfernung des zu bestimmenden Punktes vom Punkte o ist gleich b^* ebenfalls bekannt sein, sodass eine Erklärung mindestens überflüssig und darum fehlerhaft wäre.

Wenn das, was b ist, unbekannt ist, was vielleicht der Wahrheit, aber nicht Cantors Absicht entspricht wird, so haben wir zwar etwas der Erklärung Fähiges; aber die Erklärung ist nicht rein arithmetisch. Etwas annehmbarer wäre der Satz, wenn Cantor statt „Entfernung“ gesagt hätte „Verhältnis der Entfernung zur Längeneinheit“. Was ein Verhältnis von | Entfernungen sei, ist hier ja als unbekannt, also der Erklärung fähig anzusehen — und darin steckt gerade der Kern der Sache —; aber auch dies würde auf Schwierigkeiten stossen.

§ 76. Doch gehen wir zur Hauptsache über! Offenbar sind die Cantorschen Zahlgrössen b, b' ..., mögen sie nun Zeichen oder abstracte Gedankendinge oder beides zugleich sein, für die Bestimmung der Entfernungen völlig überflüssig. In der That macht ihre Einmischung die Sache nur verwickelter, ohne irgendetwas zu nützen. Man lasse die Zahlgrössen ganz aus dem Spiele, und man wird finden, dass die Fundamentalreihe zu dem Zwecke vollkommen genügt, einerlei ob ihr ein Zeichen b zugeordnet ist oder nicht.

Ohne die angegebene Bestimmung von Entfernungen haben wir nur Fundamentalreihen einerseits und Zeichen andererseits, die Hauptsache aber fehlt. Da die Zeichen b, b'... unwesentlich sind, haben wir in der That nur die Fundamentalreihen. Diese Reihen können zur Bestimmung von Verhältnissen dienen, aber erst, nachdem wir gelernt haben, was ein Grössenverhältnis ist, und gerade das fehlt uns.

So auch hier. Erst müssen wir die Grössenverhältnisse, die reellen Zahlen kennen; dann können wir entdecken, wie wir mit den Fundamentalreihen die Verhältnisse bestimmen können. Seltsam ist es, dem Zuordnen der Zeichen b, b', b''... irgendeine schöpferische Kraft zuzutrauen46. Das Hereinziehen der Geometrie ist also dadurch entscheidend, dass man sich

45 der Fundamentalreihe.
46 Für die sonderbare Auffassung der Zeichen und dessen, was sie zu leisten haben, bei vielen neueren Mathe-
damit des Inhaltes bemächtigt, auf den hier alle Anstrengungen gerichtet sind. Dann aber liegt das Entscheidende in der Geometrie, und Cantors Theorie ist keineswegs eine rein arithmetische.

§ 77. Aber ist denn wirklich die Auffassung richtig, dass die sogenannten Zahlen, die Cantor seinen Fundamentalreihen zuordnet, Zeichen sein? Obwohl Cantor selbst sie sich gefallen lässt, liegt es wegen der grossen Schwierigkeiten, die mit ihr verbunden sind, nahe, eine andere vorzuziehen. Ich vermute ungefähr Folgendes: Mit jeder Fundamentalreihe steht eine gewisse Zahl in Verbindung, die keine rationale zu sein braucht. Diese Zahlen sind also zum Theil neue, bisher noch nicht betrachtete, und sie sollen eben durch die Fundamentalreihen bestimmt werden, mit denen sie in Verbindung stehen. Das Zeichen \(b_n \) bezeichnet dann nicht die Fundamentalreihe, sondern die mit ihr verbundene Zahl. Diese ist dann also selbst kein Zeichen, sondern wohl das, was Cantor ein abstraktes Gedankending nennt⁴⁵.

Man erkennt nun wohl die Klippe, an der dieser Versuch scheitern muss. Wir wissen garnichts über die Art der Verbindung, in der die Zahl mit der Fundamentalreihe stehen soll. Durch eine ganz unbekannte Beziehung kann aber ein unbekanntes Etwas nicht bestimmt werden. Der Fehler ist, dass die Zuordnung zur Fundamentalreihe und die Definition der neuen Zahlen in eine Handlung zusammengezogen werden. Wir können zwar eine definierte Zahl einer Fundamentalreihe zuordnen, nicht aber eine erst zu definierende, die wir also noch garnicht haben⁴⁶. Nehmen wir unser Gleichnis wieder auf! Versetzen wir uns wieder auf den Standpunkt, wo wir keine Metalle kennen, aber Linienspectrum! Nun sagen wir: wir ordnen diesem Spectrum ein dadurch zu definirendes Metall Natrium zu. Aber woher erhalten wir das Metall? Jedenfalls nicht durch diese Zuordnung, die uns nichts verschaffen kann, was wir nicht schon haben. Wir kennen ja nur einige Spectren, wissen aber noch nichts von Spectralanalyse, haben noch gar keine Ahnung von der besonderen Beziehung, in der die Spectren zu den Metallen stehen, die uns selbst noch unbekannt sind. Der Name „Natrium“ schwebt noch in der Luft. Und so schwebt denn auch das Zeichen \(b_n \) bei Cantor zunächst noch in der Luft; wir haben noch nichts, was wir damit bezeichnen könnten. Wenn es nun an der angeführten Stelle heisst „in dem ersten Falle sage ich, dass \(b \) gleich Null, im zweiten, dass \(b \) grösser als Null oder positiv, im dritten, dass \(b \) kleiner als Null oder negativ sei“, so wird das Zeichen \(b_n \) hier ohne Weiteres so gebraucht, als bezeichne es etwas, während noch garnicht feststeht, dass etwas gefunden werden könne, was der Absicht gemäss der Fundamentalreihe zuzuordnen wäre. Denn zunächst ist doch nur eine Absicht ausgesprochen worden; ob sie erreichbar sei, steht noch dahin.

§ 78. Wir betrachten nun die oben angeführten Satze, in denen angegeben wird, wann die einer Zahlenreihe zugeordnete (oder zuzuordnende?) Zahl gleich Null, grösser als Null oder kleiner als Null sei. Wir fragen: wird hierdurch etwas definiert? oder wird etwas zugeordnet? oder was ist sonst der Zweck dieser Sätze? Cantor schreibt: „Im ersten Falle sage ich, dass \(b \) gleich Null sei.”

matikern ist die grundlegende Wichtigkeit kennzeichnend, die dieser Handlung beigelegt wird; man sollte sie mit besonderen Caerimonien umgeben!

⁴⁵Dann wäre der oben angeführte Ausdruck Cantors, nach dem das Zeichen \(b_n \) selbst ein abstraktes Gedankending sein sollte, ungenau und wäre so zu verstehen, dass \(b_n \) ein solches Gedankending bezeichne. Solche Ungenauigkeiten scheinen sich grosser Beliebtheit zu erfreuen, sind uns dadurch aber nicht annehmbarer.

⁴⁶Ebenso könnte man sagen: „Sie hängen den zu ergreifenden Dieb.”

Nun sagt Cantor weiter, dass im zweiten Falle b größer als Null oder positiv sei. Hierbei muss eigentlich sowohl die Grösserbeziehung, als auch die Null und ebenso, was positiv ist, als vollständig definiert und bekannt vorausgesetzt werden. Obwohl es unwahrscheinlich ist, dass Cantor solche Definitionen gehabt habe, welche ohne Weiteres auf die neuen Zahlen Anwendung finden können, so wollen wir dies doch zunächst einmal annehmen. Wäre nun b ebenfalls schon definiert, so wäre gar nichts mehr festzusetzen; sondern es wäre einfach zu untersuchen, ob b größer als Null wäre. Offenbar ist hier b also noch nicht definiert; wir kennen es noch nicht. Dann kann hierin nur ein Wink für die Zuordnung liegen: man ordne einer Fundamentalreihe, wenn der zweite Fall vorliegt, eine Zahl zu, die grösser als Null ist. Welche von allen positiven Zahlen man nehmen solle, bleibt freilich ganz unentschieden. Wenn Cantor sagt, im dritten Falle sei b kleiner als Null oder negativ, so wird dann auch dies nur ein Wink für die Zuordnung sein.

Wir haben also bisher eine schon bekannte Zahl gewissen Fundamentalreihen zugeordnet und Winke für weitere Zuordnungen gegeben; definiert worden aber ist noch nichts.

§ 79. Cantor fährt fort:

„Nun kommen die Elementaroperationen. Sind \((a_\nu)\) und \((a'_\nu)\) zwei Fundamentalreihen, durch welche die Zahlen b und b' determinirt seien, so zeigt sich, dass auch \((a_\nu \pm a'_\nu)\) und \((a_\nu \cdot a'_\nu)\) Fundamentalreihen sind, die also drei neue Zahlen bestimmen, welche mir als Definitionen für die Summe und Differenz b ± b' und für das Product b · b' dienen.‘‘Dieser Satz ist sehr fehlerhaft. Bisher kann man nur von der Null | allenfalls sagen, dass sie durch gewisse Fundamentalreihen determiniert sei. Wir müssen also für b ebenso wie für b' die Null nehmen. Dann aber ist es ein Lehrsatz, dass \((a_\nu + a'_\nu)\) die Null determinire, folglich keine Definition. Der Satz kann bewiesen werden, also muss Alles darin bekannt sein. Demnach ist für eine Definition hier keine Statt. Nun trifft es sich sehr glücklich, dass das, was bewiesen werden kann, mit dem übereinstimmt, was die scheinbare Definition sagt. Aber bei den von Cantor befolgten Grundsätzen des Definirens, oder vielmehr bei dem hier zu Tage tretenden Mangel aller gesunden Grundsätze des Definirens wäre es ebenso möglich, dass etwas durch die Definition bestimmt würde, dessen Falschheit bewiesen werden könnte.

Wenn hier vorausgesetzt wird, dass jede Fundamentalreihe eine Zahl bestimme, so ist die Absicht für die That genommen. Ausser dem Falle, wo die Null zugeordnet wird, ist bisher nur eine Absicht zuzuordnen kundgethan und sind einige Winke für die Ausführung gegeben worden, weiter nichts.

Ferner werden die Wörter „Summe“, „Differenz“, „Product“ durch sich selbst erklärt; sie sind also bisher nur unvollständig erklärt gewesen, ein Verstoss gegen unsern ersten Grundsatz.

In Wirklichkeit ist also hiermit gar nichts geleistet, sondern fälschlicherweise etwas als Definition hingestellt worden, was als Lehrsatz hätte bewiesen werden müssen.
§ 80. Mit Übergang des vom Quotienten Gesagten fahre ich in der Betrachtung der Cantorschen Darlegung fort. Es heisst da:

„Die Elementaroperationen zwischen einer durch eine Fundamentalreihe \((a_\nu)\) gegebenen Zahl \(b\) und einer direct gegebenen rationalen Zahl \(a\) sind in den soeben festgesetzten eingeschlossen, indem man \(a'_\nu = a, b'_\nu = b\) sein lässt.“

Hierin ist ein Widerspruch. Der Ausdruck „eine durch eine Fundamentalreihe \((a_\nu)\) gegebene Zahl \(b"\) setzt in diesem Zusammenhange voraus, dass durch jede Fundamentalreihe eine Zahl gegeben werde. Wenn das der Fall wäre, so wäre auch eine Zahl durch die Fundamentalreihe gegeben, deren Glieder sämmtlich \(a\) sind, und es wäre nun keine Statt mehr für die Festsetzung, dass diese Zahl \(a\) sei; sondern es müsste eben untersucht werden, welche Zahl durch jene Fundamentalreihe gegeben wäre, eine Untersuchung, die freilich zu keinem Ziele führen kann, weil in der That nur die Absicht kundgegeben ist, unter Beachtung gewisser Regeln jeder Fundamentalreihe eine Zahl zuzuordnen. Durch die letzte Festsetzung ist dieser Plan freilich etwas weiter ausgeführt worden, aber ohne dass dadurch neue Zahlen zu Tage gefördert wären. Wir haben uns also im Grunde unserm Ziele noch gar nicht genähert.

§ 81. Wir machen noch einen Schritt weiter. Cantor schreibt: „Jetzt erst kommen die Definitionen des Gleich-, Grösser- und Kleinerseins zweier Zahlen \(b\) und \(b'\) (von denen \(b'\) auch = \(a\) sein kann), und zwar sagt man, dass \(b = b'\) oder \(b > b'\) oder \(b < b'\) ist, je nachdem \(b - b'\) gleich Null oder grösser oder kleiner als Null ist." Was das Gleichheitszeichen betrifft, so haben wir oben angenommen, dass es völliges Zusammenfallen bedeuten solle. Nehmen wir das auch hier, allerdings nicht ganz im Einklange mit dem Wortlaut an, so haben wir hier keine Definition der Gleichheit; sondern diese ist bekannt. Der Zweck kann dann nur sein, die Zahlen noch etwas näher zu bestimmen, die den Fundamentalreihen zugeordnet werden sollen. Es wird dann nämlich die Absicht bekundet, denjenigen Reihen dieselbe Zahl zuzuordnen, für welche \(\lim_{\nu \to \infty} (a_\nu - a'_\nu) = 0\) ist. Falls nun der einen der beiden Reihen schon eine Zahl zugeordnet ist, so wird die der andern zuzuordnend Zahl hierdurch bestimmt. Da aber bisher nur rationale Zahlen zugeordnet sind, so kommen wir auch hierdurch nicht weiter.

§ 82. Diese Definitionen der Summe, der Differenz, des Products, des Gleich-, Grösser- und Kleinerseins scheinen nun die neuen Zahlen selbst erst eigentlich zu schaffen, scheinen den Zeichen »+« »-« »=« »» durch sich selbst erklärt werden, indem man ihn den Eindruck, man
wisse bereits, was eine Summe, eine Differenz, was gleich und was grösser sei, und durch
dieses schon Bekannte verleihe man nun in einer gewissen, freilich unklaren Weise den Zei-
chen »b« »b′« u. s. w. einen Inhalt, indem man diese in Sätzen, wie »b > b′« »b + b′ < b′′«
gebrauche. Was sich zunächst als Erklärung der Zeichen »+« »>« »<« u. s. w. darstellt, macht
im nächsten Augenblicke den Anspruch, dasjenige näher zu bestimmen, was den Funda-
mentalreihen nach | Cantor zugeordnet werden soll. Diese Täuschung ist aber nur dadurch
möglich, dass jene Zeichen nun doch wieder als bekannt angesehen werden. So schillern jene
Definitionen in zwei Farben, indem sie bald die Summe, das Product, das Grössersein u. s. w.
definiren, bald die neuen Zahlen bestimmen sollen. Aber das ist unvereinbar.

Ein Gleichnis mag die Verständigung erleichtern. Wenn man definiert „ein Urtheil ist hart,
wenn darin die Eigenschaft hart einem Dinge zueckt wird.“ so macht man den Fehler,
das Wort „hart“ durch sich selbst zu erklären, es in einem Atem seiner Bedeutung nach als
bekannt und als unbekannt anzusehen. Nun könnte man aus der als bekannt vorschwebenden
Bedeutung von „hart“ entnehmen, dass alles Harte ein physischer Körper wäre, und nun wei-
ter schliessen: also sind die Urtheile, in denen die Eigenschaft hart einem Dinge zuerkannt
wird, physische Körper. Hier liegt die Sache ganz ähnlich; auch hier sind Wörter „grösser“
„Summe“ u. s. w. durch sich selbst erklärt, auch hier schliesst man aus den als bekannt vor-
schwebenden Bedeutungen dieser Wörter, dass die neuen Gegenstände Zahlen seien wie die
rationalen Zahlen und denselben Zwecken dienen können wie diese. Der Unterschied ist nur
der, dass wir diese neuen Zahlen noch gar nicht haben, dass sie hierdurch eigentlich erst ge-
schaffen werden sollen, während wir jene Urtheile immerhin schon haben.

Man kann nicht mit einer Definition zweierlei definiren: das Grössersein und die irratio-
nalen Zahlen — Verstoss gegen unseren zweiten Grundsatz.

§ 83. Das stückweise Definiren erzeugt hier das Zwielicht, das zum Gelingen der Täu-
schung nöthig ist. Diese verschwindet sofort, wenn man an Stelle der Wörter und Zeichen da,
wo sie als unbekannt behandelt werden, ganz neu geschaffene Wörter und Zeichen setzt, mit
denen nicht schon ein Sinn oder der Schein eines Sinnes verbunden ist. Ersetzen wir so

„positiv“ durch „albig“,
„negativ“ „bebig“,
„gleich“ „azig“,
„grösser als“ „bezig“,
„kleiner als“ „zezig“,
„Null“ „Poll“,
„Summe“ „Arung“,
„Differenz“ „Berung“,
„Product“ „Asal“,
die Zeichen »>« „>«,
»<« „<«,
»=« „=«,
»+« „+«,
»−« „−«,
»<« „<«,
so gehen die Cantorschen Erklärungen über in:

„Eine Fundamentalreihe bietet drei Fälle dar; entweder es sind ihre Glieder aν für hinrei-
chend grosse Werthe von ν kleiner ihrem absoluten Betrage nach als eine beliebig vorgegebe-
ne Zahl; oder es sind dieselben von einem gewissen ν an grösster als eine bestimmt angebbare

S.93
rationale Zahl \(\rho \); oder sie sind von einem bestimmten \(\nu \) an kleiner als eine bestimmte angeb- bare negative rationale Grösse \(-\rho \). In dem ersten Falle sage ich, dass \(b \) azig Poll, im zweiten, dass \(b \) bezig Poll oder albig, im dritten, dass \(b \) zezig Poll oder bebig sei\(^{47}\).

„Sind \((a_\nu)\) und \((a'_\nu)\) zwei Fundamentalreihen, durch welche die Zahlen \(b \) und \(b' \) determinirt seien, so zeigt sich, dass auch \((a_\nu + a'_\nu)\), \((a_\nu - a'_\nu)\), \((a_\nu \cdot a'_\nu)\) Fundamentalreihen sind, die also drei neue Zahlen bestimmen, welche mir als Definitionen für die Arung \(b \equiv b' \), für die Berung \(b \equiv b' \) und für das Asal \(b \equiv b' \) dienen.”

„Jetzt erst kommen die Definitionen des Azig-, Bezig- und Zezigseins zweier Zahlen \(b \) und \(b' \), und zwar sagt man, dass \(b \) \(\not\equiv b' \) oder \(b \equiv b' \) oder \(b \equiv b' \) ist, jenachdem \(b \) \(\equiv b' \) azig Poll oder bezig Poll oder zezig Poll ist\(^{48}\).

Durch diese Definitionen können die Bedeutungen der neuen Wörter und Zeichen min- destens mit denselben Rechte festgesetzt werden, wie durch die Cantorschen die früheren unvollständigen ergänzt werden können. Aber, wie man sieht, langt der diesen neuen Wörtern und Zeichen so verlehene Sinn nicht für den hier verfolgten Zweck. So verschwindet jeder Schein, also durch diese Definitionen die neuen Zahlen irgendwie näher bestimmt würden. Bei den Cantorschen Definitionen kann dieser Schein also nur dadurch erzeugt werden, dass gegen unsern ersten Grundsatz gefehlt ist, wodurch jene Wörter „gleich“, „größer“ u. s. w. in ein beständiges Schwanken zwischen Bekanntsein und Unbekanntsein versetzt werden. Jene früheren Erklärungen lassen scheinbar etwas einfiessen in die neuen Zahlen, obwohl sie für diesen erweiterten Gebrauch nicht bestimmt sein können. Sobald man das Schwanken aufhebt, verschwindet die Täuschung. Wenn Illigens dies mit den Worten „Die aufgestellten Zahlreihenzeichen vermögen trotz aller Benennungen, die ihnen durch verschiedene Definitionen zugelegt werden, keine Quantitätsbegriffe zu werden“ gemeint hat, so stimmen wir ihm bei, müssen aber die Ausdruckweise als ungenau beanstanden.

\section*{§ 84. Werfen wir noch einen zusammenfassenden Blick auf die Ergebnisse unserer Prü- fung der Cantorschen Theorie! Wir unterscheiden zwei Auffassungsweisen: nach der ersten sind die Zahlen, die Cantor seinen Fundamentalreihen zuordnen will, Zeichen, nach der zweiten sind sie abstrakte Gedankendinge.

Im ersten Falle werden wir die Reihen als die Bedeutungen der sogenannten Zahlen an- zusehen haben. Die Zuordnung dieser Zahlen ist unwesentlich; wir haben im Grunde nur die Fundamentalreihen, während die Hauptsache fehlt, nämlich die eigentlichen Zahlen, die Grössenverhältnisse. Diesem Mangel sucht Cantor dadurch abzuhelfen, dass er zeigt, wie seine Zahlen zur quantitativen Bestimmung von Entfernungen dienen können. Aber erstens sind seine Zahlen dabei ganz überflüssig, und zweitens wird damit das Entscheidende in die Geometrie verlegt, wodurch die Theorie aufhört eine rein arithmetische zu sein.

Im zweiten Falle bleibt es bei der Absicht, den Fundamentalreihen neue Zahlen zuzu- ordnen. Es gelingt nicht, diese abstrakten Ideen zu fassen, und bevor wir sie haben, können wir sie auch nicht zuorden. Cantor meint zuweilen, dass seine Fundamentalreihen Zahlen bestimmen, widerspricht dem aber selbst. Alles, was erreicht wird, ist dies, dass einigen Funda- mentalreihen rationale Zahlen zugeordnet werden; aber es gelingt nicht einmal, der Funda- mentalreihe

\[
\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{\nu}{\nu + 1}, \ldots
\]

\(^{47}\text{Die Ausdrücke „azig Poll“, „bezig Poll“ und „zezig Poll“ müssen als untrennbare Ganze betrachtet werden, gemäss unserm zweiten Grundsatz.}\)

\(^{48}\text{Wie man sieht, hätten wir für „gleich“, „grösser“ und „kleiner“ eigentlich noch eine dritte Garnitur von Aus- drücken schaffen müssen.}\)

§ 85. Ich schliesse hieran die Betrachtung der etwas abweichenden Darstellung, die Cantor früher gegeben hat. Er geht auch hier von den Reihen aus, die er später Fundamentalreihen genannt hat, und sagt:

„Diese Beschaffenheit der Reihe (1) drücke ich in den Worten aus: »Die Reihe (1) hat eine bestimmte Grenze b_α.“

Diese Definition ist fehlerhaft, weil der Buchstabe b_α darin vorkommt, der bei andern Reihen derselben Beschaffenheit durch andere Zeichen, z. B. b'_α, ersetzt wird. Dadurch kommt eine Verschiedenheit in die erklärten Ausdrücke, der nichts in dem erklärenden entspricht; vielmehr handelt es sich immer um dieselbe Beschaffenheit. Wenn Cantor gesagt hätte: „Diese Beschaffenheit der Reihe (1) drücke ich in den Worten aus: »die Reihe (1) ist eine Fundamentalreihe«“, so wäre dieser Einwand hinfällig; aber es wäre auch Alles abgeschritten, was grade an dies b geknüpft | wird. Die nun folgenden Bestimmungen über Gleichheit, Grössersein, Summe, Product solcher b fielen hinweg und damit Alles, worauf es ankommt. Das ist wohl der Grund, weshalb Cantor später eine andere Darstellung vorgezogen hat.

Das Eigenthümliche der Heineschen Theorie ist nun grade, dass für sie die Zeichen Alles sind, und das ist von Thomae noch deutlicher ausgesprochen worden. Beide Schriftsteller stimmen auch darin überein, dass sie diesen Grundgedanken nicht bis zu Ende durchführen, sondern zuletzt ihre Zeichen doch etwas bezeichnen lassen, nämlich jene Zahlenreihen

50 Grelles J., Bd. 74, S. 172.
oder Zahlenfolgen, die den Cantorschen Fundamentalreihen entsprechen. Während man aber wohl annehmen darf, dass diese Fundamentalreihen aus *abstracten Gedankendingen* bestehen, um mit Cantor zu reden, wird man jene Zahlenreihen und Zahlenfolgen aus Zeichen, aus geschriebenen oder gedruckten, sichtbaren, stofflichen Figuren zusammengesetzt denken müssen. Diese Reihen werden also wahrscheinlich Gruppen solcher Figuren sein, die durch ihre räumliche Anordnung sich als Reihen dem Auge darstellen. Wir haben hier dann die eigentümliche Sachlage, dass gewisse Zeichen Reihen oder Folgen bezeichnen, deren Glieder wieder solche Reihen bezeichnen u. s. w. ins Unendliche.

§ 87. Ich lasse nun die hierauf bezüglichen Aeusserungen von Heine und Thomae folgen und frage nach dem Beweggründe zur Aufstellung dieser Theorien.

Heine schreibt:

„Die Frage, was eine Zahl sei, beantworte ich, wenn ich nicht bei den rationalen positiven Zahlen stehen bleibe, nicht dadurch, dass ich die Zahl begrifflich definiere, die irrationalen etwa gar als Grenze einführe, deren *Existenz* eine Voraussetzung wäre. Ich stelle mich bei der Definition auf den rein formalen Standpunkt, *indem ich gewisse greifbare Zeichen Zahlen nenne*, sodass die Existenz dieser Zahlen nicht in Frage steht."

Heine betont hier zweimal die Existenz, und mit Recht; denn wir haben gesehen, wie ungenügend gerade die Frage nach der Existenz von Cantor beantwortet ist. Deshalb also nennt Heine gewisse Zeichen Zahlen, um damit die Existenz dieser Zahlen sicher zu stellen, allerdings auf empirischem, nicht rein logischem oder arithmetischem Wege. Nun ist der eigentliche Zweck, dem alle diese Theorien des Irrationalen dienen sollen, doch wohl der, die Arithmetik rein von allen fremden, auch geometrischen Beimischungen hinzustellen, sie auf Logik allein zu gründen. Dieses Ziel ist gewiss zu billig; aber hier wird es verfehlt. Wenn man es nicht verschmäht, sich auf die Greifbarkeit der Zeichen zu stützen, so kann man sich auch auf die Raumanschauung berufen und die irrationalen Zahlen als Verhältnisse von Längen bestimmen.

Wir sehen, dass die Zahlzeichen hier eine ganz andere Wichtigkeit haben, als man ihnen vor dem Aufkommen der formalen Theorien zuerkannt hat. Sie sind nicht mehr äussere Hülfsmittel wie Tafel und Kreide; sondern sie bilden einen wesentlichen Bestandtheil der Theorie selbst.

Hier drängt sich uns die Frage auf: haben denn diese Zeichen dadurch, dass man sie Zahlen nennt, die Eigenschaften der eigentlichen Zahlen, die wir vorläufig als Grössenverhältnisse gefasst haben?

§ 88. Thomae schreibt:

„Die formale Auffassung der Zahlen zieht sich bescheidenere Grenzen als die logische. Sie fragt nicht, was sind und was wollen die Zahlen, sondern sie fragt, was braucht man von den Zahlen in der Arithmetik. Die Arithmetik ist nun für die formale Auffassung ein Spiel mit Zeichen, die man wohl leere nennt, womit man sagen will, dass ihnen (im Rechenspiel) kein anderer Inhalt zukommt, als der, der ihnen in Bezug auf ihr Verhalten gegenüber gewissen Verknüpfungsregeln (Spielregeln) beigelegt wird. Aehnlich bedient sich der Schachspieler seiner Figuren, er legt ihnen gewisse Eigenschaften bei, die ihr Verhalten im Spiel bedingen, und die Figuren sind nur das äussere Zeichen für dies Verhalten. Zwischen dem Schachspiel und der Arithmetik findet freilich ein bedeutsamer Unterschied statt. Die Schachspielregeln sind willkürliche, das System der Regeln der Arithmetik ist ein solches, dass die Zahlen mittels einfacher | Axiome auf anschauliche Mannichfaltigkeiten bezogen werden können
und uns in Folge dessen wesentliche Dienste in der Erkenntnis der Natur leisten."

Mit andern Worten:

Für die Arithmetik kommen nur die Regeln in Betracht, nach denen die arithmetischen Zeichen zu behandeln sind, nicht aber, was diese bedeuten. Als Unterschied von dem Heineschen Standpunkte könnte man bemerken, dass Thomae die Frage nach dem Wesen der Zahlen als für die Arithmetik unerheblich ablehnt, während Heine sie dahin beantwortet, dass die Zahlen Zeichen seien. Da aber Beide darin übereinkommen, dass die Arithmetik sich mit Zeichen zu beschäftigen habe, so ist dieser Unterschied unwesentlich. Heine nennt diese Zeichen Zahlen; Thomae dagegen scheint unter „Zahl“ etwas zu verstehen, dessen Wesen für die Arithmetik nicht in Betracht komme, das also wohl kein Zeichen ist, sondern etwa die Bedeutung eines Zeichens. Da er aber auch von der Bedeutung der Zahlen spricht, so stempelt er sie doch wieder zu Zeichen, sodass eine folgerechte Redeweise hier wohl vermisst wird. Diese Bedeutungen der Zahlzeichen, die von Thomae zwar angenommen, aber als ausserhalb des Rahmens der Arithmetik liegend angesehen werden, haben wir immer Zahlen genannt. Wir sehen also, dass diese eigentlichen Zahlen oder Grössenverhältnisse nach diesem Mathematiker von der Arithmetik auszuschliessen sind. So haben wir denn hier eine eigenthümliche Arithmetik, gänzlich verschieden von derjenigen, die wir zum Unterschiede von der formalen, inhaltliche Arithmetik nennen wollen. Wir werden demnach wohl annehmen dürfen, dass Cantor auf dem Boden der inhaltlichen, Heine und Thomae dagegen auf dem der formalen Arithmetik stehen. Der Unterschied ist tief einschneidend. Freilich wird ein künftiger Geschichtsschreiber vielleicht feststellen können, dass es auf beiden Seiten an der folgerechten Durchführung fehlt, wodurch der Gegensatz doch wieder etwas von seiner Schärfe verliert.

§ 89. Was mag nun der Grund sein, das Formale dem Inhaltlichen vorzuziehen? Thomae antwortet:

„Der formale Standpunkt hebt uns über alle metaphysischen Schwierigkeiten hinweg, das ist der Gewinn, den er uns bietet.“

§ 90. Suchen wir uns das Wesen der formalen Arithmetik noch klarer zu machen! Die Frage liegt ja nahe: wie unterscheidet sie sich von einem blossen Spiele? Thomae weist als
Antwort auf die Dienste hin, die sie für die Naturerklärung leisten könne. Dies kann nur darauf beruhen, dass die Zahlzeichen etwas bedeuten, die Schachfiguren dagegen nichts. Wenn man der Arithmetik eine höhere Würde als dem Schachspiel zuschreibt, so kann das nur darin begründet sein. Aber das, was diesen Unterschied macht, liegt nach Thomae ausserhalb der Arithmetik, sodass diese an und für sich von demselben Range ist wie das Schachspiel und eher eine Kunst oder ein Spiel als eine Wissenschaft zu nennen ist. Obwohl die Zahlzeichen etwas bezeichnen, so kann man doch nach Thomae davon absehen und sie lediglich als Figuren betrachten, die man nach gewissen Regeln handhabt. Wenn man auf die Bedeutungen zurückgehen wollte, so fänden die Regeln in eben diesen Bedeutungen ihre Begründung; aber das geschieht hier, so zu sagen, hinter den Kulissen; auf der Bühne der formalen Arithmetik ist nichts davon zu bemerken.

§ 91. Während in der inhaltlichen Arithmetik die Gleichungen und Ungleichungen Sätze sind, die Gedanken ausdrücken, sind sie in der formalen zu verglichen den Stellungen von Schachfiguren, die nach gewissen Regeln verändert werden ohne Rücksicht auf einen Sinn. Denn, wäre ein Sinn zu beachten, so könnten die Regeln nicht willkürlich aufgestellt werden; sondern sie müssten so eingerichtet werden, dass aus Formeln, welche wahre Gedanken ausdrückten, immer nur solche Formeln abgeleitet werden könnten, welche ebenfalls wahre Gedanken ausdrückten. Damit wäre der Standpunkt der formalen Arithmetik verlassen. Auf diesem werden hingegen die Regeln für die Handhabung der Zeichen ganz willkürlich aufgestellt. Erst nachträglich kann man fragen, ob den Zeichen ein mit den vorher aufgestellten Regeln verträglicher Sinn gegeben werden könne; aber das liegt schon ausserhalb der formalen Arithmetik und wird erst in Frage kommen, wenn Anwendungen gemacht werden sollen. Dann aber wird es auch in Betracht kommen müssen; denn ohne einen Gedankeninhalt wird auch keine Anwendung möglich sein. Warum kann man von einer Stellung von Schachfiguren keine Anwendung machen? Offenbar, weil sie keinen Gedanken ausdrückt. Wenn sie das thäte, und wenn einem den Regeln gemässen Schachzuge der Uebergang von einem Ge-
danken zu einem andern aus jenem folgenden entspräche, dann wären auch Anwendungen des Schachspiels denkbar. Warum kann man von arithmetischen Gleichungen Anwendungen machen? Nur weil sie Gedanken ausdrücken. Wie könnten wir eine Gleichung anwenden, die nichts ausdrückte, nichts wäre als eine Figurengruppe, die nach gewissen Regeln in eine andere Figurengruppe umgewandelt werden könnte! Nun ist es die Anwendbarkeit allein, was die Arithmetik über das Spiel empor zum Range einer Wissenschaft erhebt. Die Anwendbarkeit gehört also nothwendig dazu. Ist es da nun wohlgethan, das von ihr auszuschliessen, was die Arithmetik erst zu einer Wissenschaft macht?

§ 92. Was wird denn eigentlich dadurch gewonnen? Freilich: die Arithmetik wird von einer Arbeit entlastet; aber wird die Aufgabe dadurch aus der Welt geschafft? Der Formal-Arithmetiker sucht sie auf die Schultern seiner Collegen des Geometers, des Physikers und des Astronomen abzuwälzen; aber diese lehnen es dankend ab, sich mit ihr zu befassen; und so fällt sie denn zwischen diese Wissenschaften ins Leere. Eine reinliche Scheidung der Wissensgebiete mag gut sein; aber sie darf nicht so geschehen, dass ein Gebiet übrig bleibt, für das niemand die Verantwortung übernehmen will. Wir wissen, dass dasselbe Grössenverhältnis (dieselbe Zahl) stattfinden kann bei Längen, Zeiträumen, Massen, Trägheitsmomenten u. s. w., und dadurch wird es wahrscheinlich, dass die Aufgabe der Nutzbarmachung der Arithmetik zum Theil wenigstens unabhängig von jenen Wissenschaften zu lösen ist, in denen die Anwendung geschehen soll. Darum ist es billig, vom Arithmetiker diese Arbeit soweit zu fordern, als er sie leisten kann, ohne in jene besonderen Wissensgebiete überzugreifen. Dazu gehört vor allen Dingen, dass er mit seinen Formeln einen Sinn verbindet; und dieser wird dann so allgemein sein, dass er mit Hilfe der geometrischen Axiome, der physikalischen und astronomischen Beobachtungen und Hypothesen mannichfache Anwendungen in diesen Wissenschaften finden kann.

Sind in der formalen Arithmetik Definitionen möglich? Jedenfalls nicht solche, welche für arithmetische Zeichen Bedeutungen festsetzen; denn diese sollen hier ganz ausser Betracht bleiben. Statt der Definitionen wird es hier Einführungen neuer Figuren geben mit Hinzufügung der Regeln für ihre Handhabung. Wenn also bei Thomae der Ausdruck „formale Definition“ vorkommt, so soll wohl nur dies darunter verstanden werden. In einer Theorie
der formalen Arithmetik sind auch eigentliche Definitionen möglich; aber in diesen werden nicht Figuren Bedeutungen beigelegt, die ja ausser Betracht bleiben sollen; sondern es werden in ihnen etwa Ausdrücke erklärt, mit denen man die Lehrsätze dieser Theorie kürzer fassen kann.

Der Unterschied zwischen dem Spiele selbst und seiner Theorie wird von Thomae nicht gemacht, trägt aber wesentlich zur Einsicht in die Sache bei. Wenn wir in der Thomaeschen Darstellung Lehrsätzen begegnen, so ist zu vermuten, dass sie der Theorie des Spiels angehören. Diese Sätze werden nur scheinbar von den Figuren etwas sagen, da deren Eigenschaften fast völlig gleichgültig sind und nur soweit in Betracht kommen, als sie zur Unterscheidung dienen. Vielmehr sind es die Regeln des Spiels, deren Eigenschaften durch diese Sätze ins Licht gestellt werden. So werden in der Theorie des Schachspiels nicht eigentlich die Schachfiguren untersucht; sondern auf die Regeln kommt es an und auf das, was aus ihnen folgt.

§ 94. Die Frage „was braucht man von den Zahlen in der Arithmetik?“ ist nach Thomae wohl so zu beantworten: man braucht von den Zahlen in der Arithmetik nur ihre Zeichen, die aber nicht als solche behandelt werden, sondern als Figuren; und man braucht die Regeln, nach denen man diese Figuren handhabt. Diese Regeln entnehmen wir hier nicht den Bedeutungen der Zeichen, sondern stellen sie aus eigener Machtvollkommenheit auf, indem wir uns dabei grundsätzlich volle Freiheit wahren und keine Notwendigkeit anerkennen, diese Regeln zu rechtfertigen, während wir allerdings bei der Ausübung dieser Freiheit nach den möglichen Anwendungen hinschielten, weil ohne diese die Arithmetik ein Spiel wäre und nichts weiter.

Hiernach kann man jene Thomaesche Frage wohl auch so beantworten: man braucht von den Zahlen im Rechenspiele gar nichts; denn die Zahlzeichen sind ja von ihren Bedeutungen, den Zahlen selbst, ganz losgelöst und könnten durch beliebige andere Figuren ersetzt werden.

§ 95. Vielleicht können einige Worte Thomaes der hier versuchten Darlegung seiner Auffassung zu widersprechen scheinen, wonach die Zahlzeichen in der formalen Arithmetik so behandelt werden, als ob sie nichts bezeichneten. Wenn Thomas z. B. sagt „Die Arithmetik ist für die formale Auffassung ein Spiel mit Zeichen, die man wohl leere nennt, womit man sagen will, dass ihnen (im Rechenspiel) kein anderer Inhalt zukommt, als der, der ihnen in Bezug auf ihr Verhalten gegenüber gewissen Verknüpfungsregeln (Spielregeln) beigelegt wird“, so scheint es, als ob die Zeichen doch nicht als ganz leere behandelt werden sollen, sondern als ob ihnen ein gewisser Inhalt zugeschrieben werde, der auch in der Arithmetik in Betracht komme. Aber dieser Schein entsteht nur aus der nicht ganz sachgemässen Ausdrucksweise, die freilich wohl von einer Scheu vor der Leerheit der Zeichen eingegeben ist.

§ 96. Wenn nun weiter gesagt wird: „Aehnlich bedient sich der Schachspieler seiner Figuren, er legt ihnen gewisse Eigenschaften bei, die ihr Verhalten im Spiel bedingen, und die Figuren sind nur äussere Zeichen für dies Verhalten“, so dürfte auch dies nicht genau sein; denn im Grunde erhalten die Schachfiguren durch die Aufstellung der Regeln wohl keine neue Eigenschaften; sie können nach wie vor in der mannichfachsten Weise bewegt werden; nur sind einige dieser Bewegungen den Spielregeln gemäss, andere nicht. Selbst diese Gemässheit ist eigentlich nicht erst aus der Aufstellung der Regeln entsprungen; nur beurteilen können wir sie erst, nachdem die Regeln uns bekannt sind. Auch kann ich nicht finden, dass ein Bauer im Schachspiele ein äußeres Zeichen seines Verhaltens sei; sondern ich kehre immer wieder zu dem einfachen Ausdrucke zurück: die Regeln des Schachspiels handeln von der Handhabung der Schachfiguren. Wäre es nicht eine wunderliche Ausdrucksweise, wenn man statt zu sagen „die preussische Staatsverfassung ertheilt dem Könige gewisse Rechte und Pflichten“ sagen wollte „der König von Preussen ist ein äusseres Zeichen seines verfassungsmässigen Verhaltens“? Ich muss dabei bleiben, dass der Gebrauch von Ausdrücken wie „äusseres Zeichen sein für etwas“, „sich verhalten gegenüber den Regeln“ den ganz einfachen Sachverhalt nur verdunkelt, aber nichts dem hinzufügt, was der Satz sagt „die Regeln des Schachspiels handeln von der Handhabung der Schachfiguren“.

§ 97. Etwas weiterhin schreibt Thomae:
„Allerdings giebt es Fälle, in denen auch in der Arithmetik den Zahlen nicht blos eine formale Bedeutung zukommt, z. B. in dem Satze „ diese Gleichung ist vom Grade 3“ u. s.
Hiernach scheint es, dass den Zahlzeichen neben ihrer eigentlichen Bedeutung, die für die Arithmetik nur ausnahmsweise in Betracht komme, noch eine formale Bedeutung zurekannt werde, was, wenn es wahr wäre, wegen der Zweideutigkeit bedenklich wäre; aber hier giebt wohl nur ein nicht glücklich gewählter Ausdruck Anstoß. Es soll wohl nur gesagt werden, dass in einigen Fällen die Zahlzeichen nicht nur als Figuren behandelt werden können, sondern dass zuweilen auf ihre Bedeutung zurückgegriffen werden muss. Freilich ist es auffallend, dass in der formalen Arithmetik oder in deren Theorie noch etwas Anderes als die Spielregeln in Betracht kommen kann. Wie wäre es denkbar, dass in der Theorie des Schachspiels Bedeutungen der Schachfiguren wichtig sein könnten, die für das Spiel gleichgültig sind?

§ 98. Hier mag es nützlich sein, über die Zeichen etwas ausführlicher zu handeln, da sie durch die von Heine und Andern aufgestellte Behauptung, die Zahlen seien Zeichen, zu Gegenständen der Mathematik gestempelt worden sind und so eine Wichtigkeit erlangt haben, die sie als blosse Hilfsmittel des Denkens und der Mittheilung nicht haben würden. Der schwankende Sprachgebrauch lässt dabei Missverständnisse so leicht entstehen, dass wir nicht vorsichtig genug vorgehen und uns nicht scheuen dürfen, auch Selbstverständliches auszusprechen, um sicher einen gemeinsamen Ausgangspunkt zu haben.

\[\text{im Original fehlt rechtes Zeichen [Fehlertyp: interp | Rev.: bonn]}\]
es, die Zeichen im letzten Falle in Anführungszeichen zu setzen. Zur grössern Deutlichkeit kann man auch die Worte „das Zeichen“ vorherschicken. Das mag pedantisch scheinen, ist aber durchaus nicht überflüssig. Wenn man diesen Unterschied immer scharf im Auge behalten hätte, wäre vielleicht eine Darstellung wie die Heinesche nie möglich gewesen, zu deren Wesen eben das Schillern in beiden Farben zu gehören scheint. Bei den Mathematikern sind Ausdrucksweisen üblich geworden, durch die man sich an dieses Schillern so gewöhnt hat, dass man es nicht mehr bemerkt. So findet man Redensarten wie „Es bezeichne \(a \) die kleinste Wurzel der Gleichung \((1)\)“, und wenn nun im Folgenden der Buchstabe \(a \) vorkommt, meint man damit die kleinste Wurzel jener Gleichung. Hier haben wir das Schillern. In jenem ersten Satze meint man das Zeichen, späterhin dessen Bedeutung. Man sollte also entweder schreiben „Es bezeichne \(a \) die kleinste Wurzel der Gleichung \((1)\)“ oder „Es sei \(a \) die kleinste Wurzel der Gleichung \((1)\)“.

Wenn man sich darauf legte, könnte man vielleicht Bände mit solchen Beispielen aus den Schriften neuerer Mathematiker füllen 54. Das sieht wie eine unbedeutende Kleinigkeit aus; und doch sind solche Nachlässigkeiten allem Anscheine nach die Quelle grosser Verwirrungen geworden. Und wenn sich zeigen sollte, dass grade daraus die formalen Theorien der Arithmetik ihre Nahrung gezogen haben, so ist die Sache gewiss nicht leicht zu nehmen.

Wir knüpfen hier, wie es scheint, an das von den ganzen Zahlen Bekannte, an Zusammenhänge an, die in deren Wesen begründet sind. Wir haben also wohl den formalen Standpunkt vorläufig verlassen, um Rechnungsarten kennen zu lernen, die wir dann in die formale Arithmetik hineinübernehmen wollen. Demnach werden hier unter den ganzen Zahlen die Bedeutungen der Zahlzeichen gemeint sein, nicht diese selbst. Freilich Addiren und Multiplizieren als etwas, was die Zahlen selbst angeht, können wir auf dem formalen Standpunkt nicht brauchen; aber wenn wir einmal die Zahlen mit Zahlzeichen bezeichnet haben, so spiegelt sich das die Zahlen selbst Betreffende in den Zeichen wieder, und wir erhalten Verpflichtungsweisen

§ 102. Alles dies ergiebt sich aus dem Plane einer formalen Arithmetik in Thomaes Sin-
ne so unmittelbar, dass ein Zweifel an der Richtigkeit dieser Erläuterung wohl nicht möglich ist. Nun scheint mir hier aber etwas zu fehlen, nämlich die Angabe dessen, was im arith-
metischen Spiele Addiren, Multipliziren, Subtrahiren und Dividiren ist. Beim Schachspiele
müssen wir die Figuren zunächst kennen lernen, um dann die Regeln verstehen zu können.
Etwas Ähnliches erwarten wir hier. Mit welchen Figuren werden denn jene Handlungen
vorgenommen? Wie ist die Sachlage vor der Addition und wie ist sie nachher? Das Entspre-
chende müssen wir auch von der Subtraction wissen; erst dann können wir beurtheilen, in
welchen Fällen das Subtrahiren möglich ist. Wir müssen uns nämlich immer gegenwärtig
halten, dass das Subtrahiren hier keine Denkhandlung, sondern ein äusseres Thun, ein Um-
gehen mit Figuren ist.

Wenn nun das Subtrahiren einer ersten Figur von einer zweiten darin besteht, dass wir
diese — oder eine ihr gleichgestaltete — links, jene rechts von demselben Minuszeichen
hinschreiben, so hindert mich nichts, eine Dreifigur von einer Zweitfigur zu Subtrahiren. Ich
kann aber ebenso gut ein Kalenderzeichen des Mondes von einem Kalenderzeichen der Sonne
Subtrahiren, indem ich diese Zeichen als blosse Figuren behandle. Einer Einführung neuer
Figuren, um die Subtraction möglich zu machen, bedarf es als dann nicht.

Wir müssen uns nur immer ganz klar vor Augen halten, dass es auf eine Bedeutung hier
im arithmetischen Spiele garnicht ankommt. Also: wann ein Subtrahiren möglich sei, lässt
sich garnicht beurtheilen, ehe wir wissen, welche Figuren dabei in Betracht kommen können,
und was mit ihnen vorzunehmen sei. Das muss uns so genau beschrieben werden, wie das
Rochiren im Schachspiele.

Wie etwa das Subtrahiren als Umkehrung des Addirens aufzufassen wäre, wollen wir
später ins Auge fassen, nachdem wir einige Regeln der formalen Arithmetik kennen gelernt
haben.

Zunächst wissen wir garnicht, was im Rechenspiele Addiren und Multipliziren sei. Jeden-
falls ist das Addiren der Zahlzeichen ganz verschieden vom Addiren der Zahlen. Wenn ein
Eroberer eine Stadt verbrennt, verbrennt er damit noch nicht den Namen der Stadt; was mit
der Sache geschieht, braucht damit noch nicht mit ihrem Namen oder Zeichen zu geschehn.
Nun kann man vermuten, zwei Zahlzeichen addiren solle heissen ein drittes Zahlzeichen
hinschreiben der Art, dass die Zahl die in der inhaltlichen Arithmetik die Bedeutung dieses
Zeichens ist, die Summe sei der Zahlen, die durch die beiden ersten Zahlzeichen bezeich-
net werden. Indessen würde dann die inhaltliche Arithmetik für alle Zahlen vorausgesetzt, | S.110
während sie hier nur für positive ganze Zahlen als bekannt angenommen wird. Sonst wäre
ja auch die formale Arithmetik überflüssig. Man wüsste hiernach nicht, was die Addition bei
solchen Zahlfiguren wäre, welche nicht beide in der inhaltlichen Arithmetik positive ganze
Zahlen bezeichnen. Man könnte auch daran denken, ein Verfahren des Vorwärts- oder Rück-
wärtschreitens in einer Reihe von Zahlfiguren Addition zu nennen; aber auch dies würde
nicht allgemein genug anwendbar sein. So bleibt vielleicht nur folgende Vermuthung übrig:

§ 103. Thomae schreibt weiter:

„Stellt man aber die Forderung, dass diese Operationen immer ausführbar sein sollen, so gelangt man zu neuen Zahlgebilden, der Null, den negativen und gebrochenen Zahlen. Diese lassen sich als rein formale Gebilde auffassen, d. h. als Begriffe, deren Inhalt durch ihr Verhalten gegen die Rechenoperationen erschöpft ist.“

Das Verständnis wird hier durch die Ausdrucksweise erschwert. Das Wort „Begriff“ wird hier offenbar nicht in unserm Sinne gebraucht, auch wohl nicht im Sinne der Logiker; denn dass etwa Gegenstände unter diese Begriffe fallen könnten, davon ist gar keine Rede. Was verhält sich, um mit Thomae zu sprechen, zu den Rechenoperationen? oder wovon handeln, wie wir lieber sagen, die Rechnungsregeln? Von Figuren, die etwa mit Kreide auf eine schwarze Tafel geschrieben werden können. Diese sind aber ebensowenig wie die Schachfiguren Begriffe, sondern gehören ins Gebiet der physischen Körper. So gelangen wir zu der Ansicht, dass diese neuen Zahlgebilde als Figuren hingestellt werden sollen, die durch Schreiben oder Drucken erzeugt werden, die nichts bedeuten, oder deren Bedeutung uns wenigstens nichts angeht; über deren Handhabung aber Regeln aufgestellt sind. Es ist also wohl nicht daran zu zweifeln, dass die Null, die negativen und gebrochenen Zahlen, von denen Thomae spricht, nicht eigentlich Zahlen in unserm Sinne sein sollen, sondern Zahlfiguren.

Wie wir schon gesehen haben, ist auf dem Standpunkte der formalen Arithmetik die Einführung dieser neuen Zahlfiguren gar nicht nöthig, um die Sub traction und Division immer ausführbar zu machen; aber möglich wird sie immerhin sein.

§ 104. Sehen wir jetzt erst einmal die Weise an, wie Heine die Zahlen behandelt! Er schreibt:

„Ein Hauptgewicht ist auf die Rechenoperationen zu legen, und das Zahlzeichen muss so gewählt werden oder mit einem solchen Apparate ausgerüstet werden, dass es einen Anhalt zur Definition der Operationen gewährt.“

Wir bemerken hier einen Unterschied der Heineschen von der Thomaeschen Auffassung. Nach dieser nämlich sind die Rechnungsoperationen schon da, und die neuen Figuren verhalten sich dann, so zu sagen, zu ihnen, während bei Heine die Figuren zuerst gebildet werden, und dann erst die Rechenoperationen, so zu sagen, definiert werden. Das Letzte scheint angemessener zu sein; denn wie kann ich Regeln aufstellen, ohne die Figuren zu nennen, von denen sie handeln?

Heine schreibt weiter:

„Rechenoperationen heissen Regeln, nach welchen zwei Zahlen, die durch das Operatio nszeichen verbunden sind, gegen eine einzige umgetauscht werden können.”
Das ist offenbar schief ausgedrückt. Ebenso könnte man sagen: „Strumpfstricken heisst eine Regel, nach der man aus einem Faden mittels Stricknadeln einen Strumpf verfertigt.“ Heine will sagen:

„Rechenoperationen sind nach gewissen Regeln geschehende Umtauschungen einer Gruppe, bestehend aus zwei Zahlen und einem die trennenden Operationszeichen, gegen eine einzige Zahl.“

Man kann hinzufügen, dass dabei das Operationszeichen auf die anzuwendende Regel hinweist. Heine denkt hier etwa an den Fall, wo die Gruppe »3 + 5« gegen das Zeichen »8« umgetauscht wird. Wenn in einem Satze der inhaltlichen Arithmetik die Gruppe »3 + 5« gebraucht wird, so können wir unbeschadet der Wahrheit dafür auch das Zeichen »8« setzen, weil beide denselben Gegenstand, dieselbe eigentliche Zahl bezeichnen und folglich Alles, was von dem mit »3 + 5« bezeichneten Gegenstande gilt, auch von dem mit »8« bezeichneten Gegenstande gelten muss. Und mit einer solchen Ersetzung wird in vielen Fällen ein Fortschritt der Erkenntnis gemacht werden, indem der Sinn der Zeichen von gleicher Bedeutung verschieden sein wird, und mithin auch die in den beiden Sätzen ausgedrückten Gedanken verschieden sein werden. Der Zweck der Erkenntnis ist es also, dass die Regel bestimmt, dass die Gruppe »3 + 5« durch das Zeichen »8« ersetzt werden dürfe. Dieser Zweck fordert eine solche Beschaffenheit der Regeln, dass, wenn ihnen gemäss aus wahren Sätzen ein neuer Satz abgeleitet wird, auch dieser wahr sei. Ob die Regeln derart sind, kann man natürlich erst beurtheilen, nachdem den Zeichen Bedeutungen gegeben sind; denn vorher kann man aus ihnen nicht Sätze bilden, welche einen wahren Gedanken ausdrücken. Dies gilt für die inhaltliche Arithmetik; hier in der formalen haben wir die Regeln unabhängig von einem Sinne. Der Erkenntniszweck bestimmt nicht ihren Inhalt, sondern sie werden willkürlich aufgestellt.

§ 105. Heine fährt fort:

„Diese Regeln werden zunächst so festgesetzt, dass sie das Resultat der gewöhnlichen Rechnung geben, wenn die eingeführten Zahlen allein 0, 1, 2, 3, 4 etc. wären.“

Das ist eigentlich ungenau; denn das Resultat der gewöhnlichen Rechnung — d. h. doch wohl in der inhaltlichen Arithmetik — ist eine eigentliche Zahl, kein Zahlzeichen, also keine Zahl nach Heines Sprachgebrauche. Heine macht hier Anleihe bei einer fremden Theorie. Weiter sagt er:

„Die Unmöglichkeit der Subtraction in vielen Fällen veranlasst zur Einführung neuer Zeichen oder Zahlen: für jedes schon vorhandene Zeichen a führt man noch ein Zeichen neg(a) ein und erweitert die Definition der Operationen in geeigneter Art, sodass sie für die neuen Zahlen noch ein Resultat liefern, an früheren angebracht dasselbe wie früher.“

Nun ist weiter davon die Rede, dass die Definitionen der Operationen erweitert werden sollen. Das soll wohl heissen, dass die Regeln ergänzt werden sollen.

55Genauer: aus Sätzen, die wahre Gedanken ausdrücken.
Heine fährt fort:

„Dann zeigt sich, nach zweckmässiger Definition der Subtraction, dass \(\text{neg}(a) = 0 - a \) sein muss."

Statt „zweckmässiger Definition der Subtraction“ muss es wohl etwa „zweckmässige Aufstellung von Regeln für die Umtauschung von Figurengruppen der Form \(a - b \) gegen andere Figuren“. Was aber zweckmässig sei, können wir gar nicht beurtheilen, da der Zweck uns unbekannt ist. Wir wissen ja nicht einmal, ob eine solche Umtauschung überhaupt nöthig sei, ob wir uns nicht einfach mit \(3 - 5 \) begnügen können. Wie nun die ergänzte Regel lauten solle, erfahren wir nicht; und damit bleibt ein Hauptpunkt ganz im Dunkeln. Wie können wir das Spiel kennen lernen, wie dessen Theorie verstehen, wenn uns gar nicht einmal die Regeln vollständig mitgetheilt werden! Wir werden, wie es scheint, stillschweigend auf unsere Kenntnis der inhaltlichen Arithmetik verwiesen. Aber wenn wir diese haben, brauchen wir die formale nicht.

Nun kommt die Behauptung, es müsse \(\text{neg}(a) = 0 - a \) sein. Das ist unverständlich. Wir haben hier eine Gruppe von Zeichen, mit der wir keinen Gedanken verbinden; folglich kann auch nichts behauptet werden. \(\text{neg} \) ist für uns eine blosse Figur, ebenso das Gleichheitszeichen, das Minuszeichen und das Nullzeichen. Da Heine hier eine Behauptung ausspricht, meint er einen Gedanken auszudrücken, weiss aber wahrscheinlich selbst nicht, welchen. Das ist das Verhängnis der Formalarithmetik, dass sie nicht umhin kann, Sätze auszusprechen, welche Gedanken ausdrücken sollen, von denen sich doch niemand genaue Rechenschaft geben kann.

§ 106. Aehnliches finden wir bei Thomae. Wir lesen dort:

»Diese Regeln sind in den Formeln enthalten

\[
\begin{align*}
 a + a' &= a' + a, \\
 a + (a' + a'') &= (a + a') + a'' = a + a' + a'', \\
 (a' - a) + a &= a' \\
 a a' &= a' a \\
 a (a' a'') &= (a a') a'' = a a' a'', \\
 (a' : a) a &= a' \\
 a (a' + a'') &= a a' + a a''.
\end{align*}
\]

«

Das ist eine Ueberraschung. Was würde jemand sagen, der nach den Regeln des Schachspiels gefragt hätte, und dem statt aller Antwort eine Gruppe von Schachfiguren auf dem Schachbrette gezeigt würde? Wahrscheinlich, dass er keine Regel darin finden könnte, weil er gar keinen Sinn mit diesen Figuren und mit ihrer Zusammenstellung verbinden. Nur scheinbar liegt der Fall hier anders, weil wir das Pluszeichen, das Gleichheitszeichen, den Gebrauch der Buchstaben aus der inhaltlichen Arithmetik schon kennen; denn hier wollen wir formale Arithmetik treiben, und daraus entsteht die Frage, ob jene Zeichen hier überhaupt als Zeichen
oder nur als Figuren zu behandeln seien. In diesem Falle wäre nicht abzusehen, wie eine Regel dadurch gegeben werden könnte. Wenn sie aber als Zeichen zu behandeln sind, könnten sie keinesfalls dieselbe Bedeutung wie in der inhaltlichen Arithmetik haben; denn dann hätten wir einen Satz der inhaltlichen und keine Regel der formalen Arithmetik.

§ 107. Obwohl uns hier die Darstellung im Stiche lässt, können wir doch versuchen, den Sinn zu ermitteln, den diese Formeln hier haben sollen, indem wir fragen, was für die Behandlung der Zeichen aus dem Sinne folge, den diese Zeichen in der inhaltlichen Arithmetik haben. Sehen wir zunächst von den Buchstaben ab, die offenbar der Regel Allgemeinheit verleihen sollen, und betrachten die Formel

\[2 + \frac{1}{2} = \frac{1}{2} + 2 \]

Diese besagt in der inhaltlichen Arithmetik, dass die Summe von 2 und \(\frac{1}{2} \) zusammenfällt mit der Summe von \(\frac{1}{2} \) und 2, oder dass \(2 + \frac{1}{2} \) dieselbe Zahl ist wie \(\frac{1}{2} + 2 \). Was folgt daraus für die Zeichen? Offenbar, dass eine wie »2 + \(\frac{1}{2} \)« gestaltete Zeichengruppe überall ersetzt werden darf durch eine wie »\(\frac{1}{2} + 2 \)« gestaltete und umgekehrt. Dabei ist selbstverständliche Voraussetzung, dass gleichgestaltete Zeichen oder Zeichengruppen dasselbe bedeuten. Wir haben so die Regel der formalen Arithmetik aufgestellt, die unserm Satze der inhaltlichen Arithmetik entspricht, und dürfen vermuten, dass Thomae diese mit der Formel

\[a + a' = a' + a \]

ausdrücken würde. Die Formel

\[a + a' = a' + a \]

wird demnach bei Thomae besagen: eine Figurengruppe, die aus zwei Zahlfiguren links und rechts von einer Plusfigur besteht, darf ersetzt werden durch eine Figurengruppe derselben Art, in der die Zahlfiguren ihre Stellen gegenüber der Plusfigur vertauscht haben. Vorher hätte gesagt werden müssen, welche Figuren Zahlfiguren wären.

Erinnern wir uns nun, dass die Theorie des Spiels vom Spieles selbst zu unterscheiden ist! Die Spielhandlungen geschehen zwar nach den Regeln; aber die Regeln sind nicht Gegenstände des Spiels, sondern Grundlage der Theorie des Spiels. Die Züge des Schachspiels geschehen zwar nach Regeln; aber keine Stellung der Schachfiguren und kein Zug drückt eine Regel aus; denn die Aufgabe der Figuren im Schachspiele ist überhaupt nicht, etwas auszudrücken, sondern nach Regeln bewegt zu werden. Wenn man also die formale Arithmetik als Spiel betrachtet, so ist die Formel »\(a + a' = a' + a \)« als Ausdruck einer Regel dieses Spiels eine der Grundlagen von dessen Theorie, auf der in dieser Schlüsse aufgebaut werden können; aber sie ist nicht etwas, mit dem im Spiele Veränderungen vorgenommen werden, kein Gegenstand des Spiels, nicht einer Stellung von Schachfiguren zu vergleichen, sondern dem Wortausdrucke einer Regel des Schachspiels.

§ 108. Fragen wir nun, was einem Schachzuge entspricht, welche Handlungen durch die Regeln der formalen Arithmetik beherrscht werden. Wenn man den Sinn der oben angeführten Thomaeischen Formeln in derselben Weise ermittelt, wie wir es bei der ersten gethan haben, so ergibt sich, dass jede von ihnen erlaubt, eine Figurengruppe durch eine andere oder eine einzelne Figur zu ersetzen. Wir können es uns am besten so denken, dass die Figuren mit Kreide auf eine schwarze Tafel geschrieben werden. Wir lösen dann z. B. eine wie »\(2 + \frac{1}{2} \)« gestaltete Figurengruppe aus und schreiben dafür eine Gruppe wie »\(\frac{1}{2} + 2 \)« hin.
Diese Handlung entspricht einem Zuge des Schachspiels und geschieht nach einer Regel der formalen Arithmetik. Vom Standpunkte der inhaltlichen Arithmetik mag es läppisch scheinen, die Kreide, das Auslöschen, kurz dies ganze äusserliche Thun auch nur zu erwähnen; vergessen wir aber nicht, dass eben in solchem äusserlichen Thun das Rechenspiel besteht.

Die ausgelöschte Figurengruppe wird Theil einer grosseren Gruppe gewesen sein; und die Erinnerung an die inhaltliche Arithmetik lässt uns vermuten, dass diese Figurengruppe etwas sein wird, was wir eine Gleichung oder Ungleichung nennen. So wird etwa aus einer Gruppe wie \((2 + \frac{1}{2}) \cdot 5 = 12 + \frac{1}{2}\) eine wie \((\frac{1}{2} + 2) \cdot 5 = 12 + \frac{1}{2}\) gestaltete entstehen. Jede von diesen wird einer Stellung von Schachfiguren entsprechen. Nun haben wir aber Gleichungen schon kennen gelernt als Ausdrücke der Regeln. Wir bemerken also, dass Gleichungen hier eine doppelte Rolle spielen: erstens im Spiele selbst, wo sie ebenso wenig wie die Stellungen der Schachfiguren etwas ausdrücken, und zweitens in der Theorie des Spiels, wo sie zunächst die Regeln, dann aber auch, wie wir vermuten dürfen, Folgerungen aus den Regeln auszudrücken haben. Nun denke man sich einmal das Entsprechende beim Schachspiele! Dann würden die Spielregeln durch Gruppen von Schachfiguren ausgedrückt, die auch im Spiele selbst vorkommen könnten. Es müssten dann allgemeine Sätze aufgestellt sein, die besagten, wie man die Gruppen von Schachfiguren als Regeln oder als Lehrrätze der Theorie zu verstehen habe. Mit andern Worten: es müsste eine Sprache gegeben sein, deren Ausdrucksmittel die Schachfiguren und ihre Stellungen auf dem Schachbrette wären. Es könnte dann vorkommen, dass eine Figurengruppe in doppelter Weise zu betrachten wäre: erstens im Spiele selbst, wo sie gar nichts ausdrückte, sondern einfach aus einer andern Gruppe durch einen Zug entstanden wäre, wie sie denn auch durch einen weiteren Zug in eine andere verwandelt werden könnte; zweitens in der Theorie des Spiels, wo sie ein Lehrratz wäre, also einen Sinn hatte. Eine Schlussfolgerung stellte sich dann dar als Übergang zu einer neuen Stellung, und die Regeln, nach denen solche Übergänge geschehen müssten, würden sich ergeben aus den logischen Gesetzen und aus der Weise, wie die Schachfiguren durch ihre Stellung einen Sinn ausdrücken. Diese Regeln könnten also nicht willkürlich aufgestellt werden, und es wäre nicht zu erwarten, dass sie mit den Regeln des Schachspiels übereinstimmten. Durch diese doppelte Rolle der Figuren und die daraus folgende Zwiefachheit von Regeln im Spiele selbst und in dessen Theorie würde der Einblick in die Sache so erschwert, dass man denken könnte, diese doppelte Rolle wäre geradezu erlogen worden, um eine möglichst grosse Verwirrung anzurichten.

Eine Gleichung soll also für uns bei der weiteren Betrachtung der formalen Arithmetik nichts besagen, keinen Sinn haben, sondern ist für uns nur eine Gruppe von Figuren, die nach den Spielregeln zu behandeln ist. Was in der inhaltlichen Arithmetik Gleichheitszeichen genannt wird, ist hier nur eine Figur, die keine Beziehung bedeutet.

§ 110. Auch diese Regel ertheilt eine Erlaubnis wie die Regeln des Schachspiels, wobei nichts geschehen darf, was nicht durch eine Regel erlaubt ist. Man kann noch Regeln hinzuzeigen über die Ersatzbarkeit der Buchstaben durch andere oder durch Zahlfüriguren. Auch diese Regeln werden etwas erlauben. In Wahrheit kann ja niemandem hierdurch eine Freiheit gegeben werden, die er nicht schon hat; diese Regeln werden nicht im Namen der Vernunft oder der Natur aufgestellt; nur werden durch sie einige Handlungen als zulässig im Rechen spiel anerkannt. Es handelt sich hier nicht um Wahrheit wie in der inhaltlichen Arithmetik; was der arithmetische Gesetzgeber als regelrecht anerkennen will, liegt in seinem Belieben, und dabei ist er durch keine Rücksicht auf Bedeutungen der Figuren beschränkt, die für ihn amtlich nicht vorhanden sind. Die Regeln der formalen Arithmetik sind als Richtschnuren für das Handeln den Sittengesetzen näher verwandt als den Gesetzen der inhaltlichen Arithmetik, die zwar verkannt, aber nicht übertreten werden können.

Werfen wir nun einen Blick auf die inhaltliche Arithmetik zurück, so bemerken wir, dass es da zwar Gesetze gibt, die von allen Zahlen gelten, dass aber keineswegs Alles, was von einer Zahl gilt, auch von einer andern gilt. Im Gegenteil: jede Zahl ist wesentlich verschieden von jeder andern und muss daher auch ihr besonderes Zeichen haben. Soll nun die formale Arithmetik nicht jeden Zusammenhang mit der inhaltlichen verlieren, sollen nicht die mannichfachen Gestalten der Zahlfüriguren ein lästiger Euberfluss sein, so müssen den von Thomae angeführten Regeln solche hinzugefügt werden, welche nicht von allen Zahlfüriguren gelten sollen, sodass jeder Verschiedenheit der Gestalt auch eine Verschiedenheit der Regeln entspreche. Solche Regeln werden z. B. sein, dass eine wie »1 + 1« gestaltete Figurengruppe durch eine Zweifigur, dass eine wie »2 + 1« gestaltete Figurengruppe durch eine Dreifigur ersetzt werden dürfte, dass man ferner eine Figurengruppe von der Gestalt »1 − 1« durch eine
Nullfigur, eine Figurengruppe wie \(\frac{1}{2} + \frac{1}{3} \) durch eine Einsfigur ersetzen dürfe u. s. w. Da es nun keine feste Begrenzung des Gebietes der Zahlfiguren gibt, wird auch das Regelverzeichnis, wie es scheint, nicht endgültig abzu- schliesen sein. Jedenfalls dürfen wir eine starke Unvollständigkeit des Thomaeschen feststellen.

§ 112. Wir haben uns oben bei der Frage nach dem Wesen der formalen Subtraction vorgenommen, diese Operation auch einmal als Umkehrung der Addition aufzufassen. Dazu wird hier der Ort sein. Eine erste Zahlfigur von einer zweiten subtrahiren wird dann heissen, eine dritte Zahlfigur oder eine Gruppe von Figuren hinschreiben der Art, dass jede durch Addition dieser und der ersten entstehende Figurengruppe nach den Regeln der formalen Arithmetik durch eine der zweiten gleichgestaltete Figur ersetzt werden dürfe. Hierbei ist das Addiren die oben beschriebene Handlung. Wenn z. B. eine Zweifigur von einer Dreifigur zu subtrahiren ist, so kann man eine Thomaesche Regel benutzen, nach der eine wie \((3-2)+2 \) gestaltete Figurengruppe durch eine Dreifigur ersetztbar ist. Wir sehen daraus, dass jede Figurengruppe wie \(3-2 \) eine Lösung der Aufgabe ist. Aber nicht nur Lösungen von dieser Gestalt sind anzuerkennen, sondern auch solche von den Gestalten wie \(2-1 \) und \(1 \) und sehr viele andere. Zwar geht das aus den Thomaeschen Regeln nicht hervor; aber wir haben schon gesehen, dass sie unvollständig sind. Wir werden Regeln voraussetzen dürfen, nach denen auch die Figurengruppen wie \((2-1)+2 \) und \(2+1 \) durch eine Dreifigur ersetzbar sind. Danach wäre also die formale Subtraction nach der Redeweise der Mathematiker eine vieldeutige Operation, weil die Aufgabe der Subtraction verschiedene Lösungen zuliesse. Hierin bestünde ein wesentlicher Unterschied von der inhaltlichen Arithmetik, wo die Subtraction66 eindeutig ist. Wenn man in der inhaltlichen Arithmetik \(3-2 \) oder \(2-1 \) oder 1 als Lösung der Subtractionsaufgabe hinstellt, so meint man die Bedeutung, welche dieselbe ist. Wenn man an verschiedene Stellen der Tafel Einszeichen oder wie \(2-1 \) gestaltete Gruppen schreibt, so haben alle diese dieselbe Bedeutung, und man hat trotz der Verschiedenheit des Ortes und der Gestalt der für die Lösung hingestrichenen Zeichen in der inhaltlichen Arithmetik doch nur eine einzige Lösung. Hier im Rechenspiele sind die Figuren und Figurengruppen selber Lösungen, und da sie sich nach Ort und Gestalt unterscheiden, so haben wir viele Lösungen.

Man könnte dieser Folgerung auszuweichen suchen mit Berufung auf die Thomaesche formale Bedeutung der Zahlfiguren. Man würde etwa sagen: weil alle diese Figuren und Gruppen, die als Lösungen hingestellt werden, nach denselben Regeln zu handhaben sind, so haben sie dieselbe formale Bedeutung, und diese ist die eigentliche Lösung. Dagegen ist einzuwenden: |S.119

erstens, dass diese formale Bedeutung, wie oben dargelegt, gar nicht anzuerkennen ist;

zweitens, dass diese formale Bedeutung, wenn zulässig, für alle Zahlfiguren dieselbe wäre, wenigstens solange man nur die Thomaeschen Regeln annimmt, die für alle Zahlfiguren gleichmäßig gelten sollen;

Was von der Subtraction gesagt ist, kann im Wesentlichen auf die Division übertragen werden.

66Selbstverständlich stimmt diese formale Subtraction eigentlich nur im Namen mit der Subtraction in der inhaltlichen Arithmetik überein; und die Sachlage wäre klarer zu erkennen, wenn auch diese scheinbare Übereinstimmung durch Wahl eines anderen Wortes vermieden würde.
§ 113. Nun sagt Thomae am Ende des § 2 von der niedern Arithmetik:

„Sie weist die Eindeutigkeit (Widerspruchslosigkeit) der vier Grundoperationen mit allen Zahlen nach, mit Ausnahme der Null, mit welcher nur die Addition und Subtraktion und Multiplication eindeutig ausführbar ist, mit der aber die Division nicht eindeutig, also nicht widerspruchsfrei vollzogen werden kann. Ein Quotient, dessen Nenner 0 ist, hat keine Bedeutung, und es nimmt die Null unter den Zahlen eine singuläre Stellung ein.“

Die niedere Arithmetik, die dies nachweist, kann nur eine inhaltliche sein, und also ist damit für die formale nichts gewonnen; denn Addiren, Multipliziren, Subtrahiren, Dividiren sind eben in der inhaltlichen Arithmetik ganz verschieden von den gleichnamigen Operationen im Rechenspiele. Jene Eindeutigkeit findet hier nicht statt. Hier ist auch kein Grund anzuerkennen, weshalb den Nullfiguren eine besondere Stellung einzuräumen sei. Wenigstens in dem Thomaeschen Regelverzeichnisse ist von den Nullfiguren nicht besonders die Rede, sondern alle Zahlfiguren werden darin ganz gleich behandelt. Es ist nicht einzusehen, warum die Figurengruppe \(\frac{2}{0}\) oder \(\frac{\frac{2}{2}}{0}\) nicht ebenso gut als Lösung einer Divisionsaufgabe betrachtet werden, wie etwa \(\frac{2}{3}\) oder \(\frac{2}{4}\).

In dem Satze „Ein Quotient, dessen Nenner Null ist, hat keine Bedeutung“ sind Figurengruppen wie die oben aufgeführten offenbar Quotienten genannt.57 Das Fehlen der Bedeutung ist nun für die formale Arithmetik kein Grund, solche Gruppen nicht zu verwenden; denn sie fragt überhaupt nicht nach der Bedeutung, und dass sie es nicht nötig hat, ist ja der eigentliche Grund, weshalb sie der inhaltlichen vorgezogen wird. Wenigstens in dem Thomaeschen Regelverzeichnisse ist von den Nullfiguren nicht besonders die Rede, sondern alle Zahlfiguren werden darin ganz gleich behandelt. Es ist nicht einzusehen, warum die Figurengruppe \(\frac{2}{0}\) oder \(\frac{\frac{2}{2}}{0}\) nicht ebenso gut als Lösung einer Divisionsaufgabe betrachtet werden, wie etwa \(\frac{2}{3}\) oder \(\frac{2}{4}\).

57 Wenn der Quotient selber eine Bedeutung wäre, könnte von seiner Bedeutung schwerlich die Rede sein.
58 Die formale Arithmetik fällt hier wohl aus der Rolle. Ueberhaupt scheint es manchmal, als ob die formale Arithmetik eigentlich die inhaltliche sei, die nur, um unbequemen Fragen zu entgehen, die Rolle der formalen zu spielen versuche, was ihr aber nicht recht gelingen wolle.
§ 114. Noch eine Frage erhebt sich hier: sind Figurengruppen wie »2 : (1 − 1)«, »2 : (2 − 2)«, »2 : (6 − 2 · 3)« zulässig? Offenbar würde Thomae das verneinen. Aber — höre ich einwenden — das ist ja selbstverständlich; 1 − 1 ist ja Null, ebenso 2 − 2 und 6 − 2 · 3. Gewiss bedeuten in der inhaltlichen Arithmetik »1 − 1«, »2 − 2« und »6 − 2 · 3« dasselbe wie das Zeichen »0«; vergessen wir aber nicht, dass wir uns hier in der formalen befinden! Hier handelt es sich um jene Figurengruppen selbst, nicht um das, was sie bedeuten; und da ist nicht zu leugnen, dass sie sich von einander und von der Nullfigur nicht nur unter-
| scheiden wie zwei Bauern gleicher Farbe im Schachspiele, sondern wie Figuren verschiedener Art, etwa Springer und Läufer. Nun werden Figurengruppen, die etwa wie »1 − 1«, »2 − 2« u. s. w. gestaltet sind, durch Nullfiguren ersetzbar sein. Das kommt zwar unter den Thomaesen Regeln nicht vor; aber diese sind, wie wir gesehen haben, unvollständig. Das ist nun noch kein Grund, Figurengruppen wie »2 : (1 − 1)« als unzulässig zu betrachten. Es läge dann allerdings ein Widerstreit der Regeln vor, indem man eine verbotene Gruppe erhielt, wenn man die wie »1 − 1« gestaltete Gruppe durch eine Nullfigur ersetzte. Man könnte hier eine Einschränkung der die Ersetzung erlaubenden Regel durch die verbietende annehmen. Aber offenbar wird Thomae auch Figurengruppen verbieten, welche wie »2 : (1 − 1)« gebildet sind 59.

Wir werden den Sinn des Thomaesen Satzes „Ein Quotient, dessen Nenner Null ist, hat keine Bedeutung“, als verbietende Regel verstanden, besser so ausdrücken: „Es ist verboten, Figurengruppen zu bilden, in denen auf der rechten Seite eines Divisionsdoppelpunkts, eine Nullfigur oder eine Figurengruppe steht, die nach irgendeiner Regel der formalen Arithmetik durch eine Nullfigur ersetzbar ist."

§ 115. Bei der Anwendung dieser Regel (oder dieses Lehersatzes aus der Theorie des Rechenspiels) ergibt sich eine Unsicherheit; denn man muss wissen, welche Figurengruppen durch eine Nullfigur unmittelbar oder mittelbar ersetzbar seien; und diese Frage ist nicht sicher zu beantworten, bevor nicht alle Regeln des Spiels aufgestellt sind. Und nun ist die Frage, ob ein vollständiges Regelverzeichnis überhaupt gegeben werden könne. Vorher müssen doch wohl alle überhaupt zulässigen Figurenklassen eingeführt sein. Wenn nach einem unvollständigen Regelverzeichnisse eine Ersetzung durch eine Nullfigur nicht möglich zu sein scheint, so kann eine später hinzukommende Regel es möglich machen und damit eine Figurengruppe, die vorher zulässig schien, unzulässig machen; und andererseits, wenn einige Regeln die Ersetzung erlauben, kann ein später folgendes Verbot diese Erlaubnis wieder aufheben.

Um sicher zu gehen, müsste man den Grundsatz aufstellen, dass alle verbietenden Regeln grössere Kraft als die erlaubenden haben sollten, und man müsste wenigstens alle Regeln, die verbieten, eine Figur oder eine Figurengruppe durch die Null zu ersetzen, vollständig zusammenstellen, sodass jede solche Ersetzung erlaubt wäre, die nicht ausdrücklich verboten wäre; oder man müsste umgekehrt alle Regeln, die eine solche Ersetzung erlauben, vollständig zusammenstellen. Beides würde aber wegen der unübersehbaren Mannigfaltigkeit der Figuren und Figurengruppen schwer durchzuführen | sein. Bis das geschehen, ist unsere Regel unvollständig und folglich unanwendbar.

§ 116. Die Unzulänglichkeit des Thomaesen Regelverzeichnisses macht sich noch in anderer Hinsicht bemerkbar. Nirgends ist nämlich gesagt, wie man eine Figurengruppe, die aus zwei Zahlfiguren besteht, getrennt durch einen Minusstrich, durch etwas Anderes ersetzen

59Eine singuläre Stellung nehmen also die Nullfiguren in der formalen Arithmetik nicht ein.
können. Folglich kann man nach diesen Regeln die Figurengruppe »(3 + 2) − 2« durch eine Dreifigur weder unmittelbar noch mittelbar ersetzen. Erinnern wir uns einmal daran, wie der entsprechende Satz der inhaltlichen Arithmetik bewiesen wird! Da heisst es etwa:

Nach der Definition ist (3 + 2) − 2 die Zahl, welche, um 2 vermehrt, 3 + 2 ergiebt. Diese Zahl ist 3; folglich fällt (3 + 2) − 2 mit 3 zusammen.

Hierbei ist die Eindeutigkeit der Subtraction wesentlich, die, wie gesehen, in der formalen Arithmetik nicht gilt. Weiter ist wesentlich, dass die Zeichengruppe »(3 + 2) − 2« eine Bedeutung hat, auf die man mit dem bestimmten Artikel ("die Zahl, welche") und mit dem Demonstrativpronomen ("Diese Zahl") hinweisen kann. Auch dies fällt im Rechenspiele weg. Von einer Definition kann hier nicht gesprochen werden; denn der Minusstrich ist hier kein Subtractionszeichen, er bedeutet überhaupt nichts; statt einer Definition gibt es hier nur Regeln für die Handhabung dieses Striches; aber grade eine Regel fehlt, welche für unsern Zweck brauchbar wäre. Daher fehlt uns nach den Thomaeschen Regeln auch die Möglichkeit, die Figurengruppe »((3 + 2) − 2) − 3« umzuformen in eine wie »3 − 3« gestaltete. Danach würden wir also die Gruppe »2 : ((3 + 2) − 2) − 3 « als erlaubt ansehen können.

Nach den Thomaeschen Regeln können wir auch die Figurengruppe »(3 · 2) : 2« nicht durch eine Dreifigur ersetzen; denn eine Regel, nach welcher eine Figurengruppe, bestehend aus zwei durch einen Doppelpunkt getrennten Zahlfiguren, durch etwas Anderes ersetzt werden könnte, findet sich nicht vor.

Wir wollen diesem Mangel abzuhelfen suchen nicht durch Aufstellung einer neuen Regel, sondern indem wir die am Ende des § 109 angegebene Regel benutzen und den Thomaeschen Formeln folgende beiden hinzufügen »(a + a′) − a′ = a« und »(a · a′) : a′ = a«. Diese sind nun gleichfalls Figurengruppen, von denen das Spiel ausgeht. Vorausgesetzt wird dabei wie auch sonst eine Regel, die angiebt, wie man Buchstaben durch Zahlfiguren ersetzen kann.

§ 117. Wenn wir hierbei das oben (§ 114) aufgestellte Verbot nicht beachteten, könnten wir aus der Figurengruppe »3 · 0 = 0« und der aus unserer zweiten neuen Formel durch Ersetzung der Buchstaben durch Zahlfiguren gewonnenen »(3 · 0) : 0 = 3« die Gruppe »0 : 0 = 3« herstellen und | ebenso auch die Gruppe »0 : 0 = 4«. Aus diesen beiden könnten wir dann weiter die Gruppe »3 = 4« gewinnen. Und hierin liegt vielleicht der Grund für Thomaes Ausspruch, dass die Division nicht immer eindeutig, also nicht widerspruchsfrei vollzogen werden könne. Aber hier in der formalen Arithmetik liegt zunächst gar kein Widerspruch vor. Warum sollte nicht eine Gruppe wie »3 = 4« erlaubt sein? In der inhaltlichen Arithmetik darf sie freilich mit dem Anspruch auf Geltung nicht vorkommen, weil es da auf die Bedeutungen der Zahlzeichen ankommt, die verschieden sind. Dieser Grund fällt hier weg. Eine Figurengruppe wie »3 = 4« hinzuschreiben, ist bisher wenigstens nicht verboten worden. Erst wenn man ein solches Verbot erlässt, entsteht ein Widerspruch, oder besser Widerstreit der Regeln, die theils verbieten, theils erlauben.

§ 118. Nun sagt Thomae in § 2 unmittelbar nach seinem Regelverzeichnisse:

„Subtraction und Division wird durch Einführung der neuen Zahlen zur Addition und Multiplication. Da die gesammte Arithmetik andre als diese vier oder, wenn man will zwei Rechnungsoperationen nicht kennt, so sind neue Gebilde in der ganzen Arithmetik widerspruchsfrei, wenn sie den vier (oder zwei) Grundoperationen gegenüber widerspruchsfrei sind.“

60Hierbei fällt das „also“ auf, da ja das Ausziehen einer Quadratwurzel im Allgemeinen nicht eindeutig vollzogen werden kann, ohne dass dadurch ein Widerspruch entstande.
Dieser Ausspruch ist schwer verständlich. Zunächst kann man bezweifeln, ob die gesamte Arithmetik andere Operationen als die genannten nicht kenne. Die Grenzübergänge wenigstens scheinen sich nicht auf jene Operationen zurückführen zu lassen. Ubrigens müsste man, um einen solchen Ausspruch thun zu können, eigentlich die gesamte Arithmetik kennen, was unmöglich ist, da diese Wissenschaft nicht abgeschlossen ist und wohl nie abgeschlossen werden wird.

Ferner muss es auffallen, dass von einer Figur die Widerspruchsfreiheit ausgesagt wird. Es würde seltsam berühren, wenn hinsichtlich einer Schachfigur der Argwohn laut würde, sie könnte einen Widerspruch enthalten. Erinnern wir uns aber an die Thomaesche Ausdrucksweise, wonach der Umstand, dass Regeln unter Anderem von einer gewissen Figur handeln, als Verhalten dieser Figur gegenüber den Regeln erscheint, und wonach nun wieder diesen Verhalten als Inhalt der Figur bezeichnet wird, so sehen wir, dass ein Widerstreit, der etwa zwischen den Regeln des Schachspiels obwaltete, in das Innere einer Schachfigur verlegt erscheine. Um also zu einem Verständnisse zu gelangen, werden wir den Widerspruch wieder zurück in die Regeln verlegen müssen.

§ 119. Nun ist ferner zu fragen, was unter einem Widerspruche den Grundoperationen gegenüber zu verstehen sei. Hier ist wohl der oben berührte Thomaesche Satz heranzuziehen, dass mit der Null die Division nicht widerspruchsfrei vollzogen werden könne. Danach ist zu vermuten, dass nach Thomae eine Figur einen Widerspruch einer Operation gegenüber enthalte, wenn diese Operation nicht widerspruchsfrei mit der Figur vollzogen werden könne. Demnach waren die Nullfiguren nicht widerspruchsfrei der Division gegenüber, also überhaupt nicht widerspruchsfrei in der Arithmetik.

Ein solcher Widerspruch kann nur dadurch zu Stande kommen, dass die besonderen von einer Figurenklasse geltenden Regeln den allgemeinen von allen Zahlfiguren geltenden widersprechen. Da diese nun nach dem Thomaeschen Verzeichnisse sämmtlich erlaubender Art sind, so ist ein Widerspruch nur zu befürchten, wenn unter den besonderen Regeln, die von einer Figurenklasse handeln, auch verbietende vorkommen. Dies findet bei den Nullfiguren in der That statt. Aber auch sonst kommt es vor. Denn immer bei der Einführung einer neuen Figurenklasse wird es nöthig sein, zu bestimmen, dass diese Figuren nicht die linke Seite einer Gleichung bilden dürfen, deren rechte Seite eine Nullfigur ist. Es werde z. B. die Klasse der wie \(\sqrt{2} \) gestalteten Figuren eingeführt. Wenn wir nun nicht wissen, ob eine Gleichung wie \(0 = \sqrt{2} \) erlaubt sei, so wissen wir auch nicht, ob wir die Gruppe \(2 : \sqrt{2} \) bilden dürfen; also wissen wir auch nicht, ob wir eine Zweifigur durch eine Gruppe wie \((2 : \sqrt{2}) \cdot \sqrt{2} \) ersetzen dürfen. Es nützte uns auch nichts, wenn uns viele Versuche misslungen wären, nach den allgemeinen und den besonderen Regeln für die wie \(\sqrt{2} \) gestalteten Figuren eine Gleichung wie \(0 = \sqrt{2} \) herzustellen; denn viele misslungene Versuche sind noch kein Beweis der Unmöglichkeit, und besonders dann nicht, wenn man den Versuchen kein abgeschlossenes Regelverzeichnis zu Grunde legen kann. Ebenso müssten Figurengruppen wie \(0 = 1 - \sqrt{2} \) und unzählige andere verboten werden.

Ob nun alle diese verbietenden Regeln etwa in eine einzige oder in wenige zusammengefasst werden können, mag uns hier nicht weiter kümmern. Jedenfalls kommen unter den besonderen von den wie \(\sqrt{2} \) gestalteten Figuren geltenden Regeln auch verbietende vor, und dass sie mit den allgemeinen nicht in Widerstreit gerathen können, kann daraus nicht gefolgert werden, dass diese allgemeinen Regeln untereinander im Einklang sind. Jede neu einzuführende Figurenklasse wird besondere Regeln nöthig machen, unter denen auch verbietende sein werden. Denn wenn von den neuen Figuren genau dieselben Regeln gelten sollten,
wie von denen einer alten Klasse, so wäre für die Wahl einer besonderen Gestalt kein Grund vorhanden. Wenn z. B. von den wie »\(i\)« gestalteten Figuren genau dieselben Regeln gelten sollten, wie von den Einsfiguren, so brauchte man jene Figuren nicht. Wenn aber die Regeln zum Theil verschieden sind, so verbürgt das Zusammenstimmen der von den Einsfiguren handelnden Regeln nicht dasselbe hinsichtlich der wie »\(i\)« gestalteten Figuren. [S.125]

Der Satz, dass die formale Arithmetik eine vollkommen widerspruchsfreie Begründung zulasse, entbehrt demnach des Beweises, und seine Wahrheit unterliegt im Gegentheile grossen Zweifeln. Thomaeis entgegengesetzte Meinung beruht auf dem Irrthume, dass die in seinem § 2 aufgeführten Regeln ein vollständiges Verzeichnis bilden, und besonders darauf, dass er ganz die verbietenden Regeln übersieht, die jede neue Figurenklasse nothwendig mit sich führt.

§ 120. Thomae fährt fort:

„Da für die Weiterbildung des Zahlenbegriffes doch an einer gewissen Stelle einmal die formale von Beziehungen auf Sinnesobjecte freie Auffassung eintreten muss, so entscheiden wir uns für dieselbe schon bei den negativen und gebrochenen Zahlen.“

Hierbei ist vorausgesetzt, dass jede Auffassung der Zahlen, wodurch diese nicht zu Sinnesobjecten in Beziehung gesetzt werden, eine formale im Thomaeschen Sinne sei, oder umgekehrt ausgedrückt, dass jede inhaltliche Arithmetik die Zahlen zu Sinnesobjecten in Beziehung setze. Das ist ein Irrtum. In unserm ersten Bande hat uns offenbar nichts ferner gelegen, als die Zahlzeichen als Figuren zu behandeln und diese Figuren Zahlen zu nennen; es hat uns aber auch nichts ferner gelegen, als die Arithmetik auf sinnliche Wahrnehmung zu gründen und Haufen von sinnlichen Dingen Zahlen zu nennen. Unter der Anzahl Null verstehen wir nicht eine gewisse ründliche Figur; sondern diese ist uns nur ein Zeichen für das, was mir meinen, und was wir als vorhanden anerkennen, obwohl es weder ein physischer Körper, noch eine Eigenschaft eines solchen ist. Also, wie sehr wir auch damit einverstanden sind, dass die Arithmetik sich vor jeder Bezugnahme auf sinnliche Dinge zu hüten habe, dass dem nach die Zahlzeichen nichts Sinnliches bedeuten, so sehr betonen wir anderseits, dass diese Zeichen deshalb nicht bedeutungslos sind, und lehnen es ab, sie selbst Zahlen zu nennen.

§ 121. Wir wenden uns nun zum § 3 der Thomaeschen Darlegung. Wir lesen dort:

„Die gemeinen Zahlen lassen sich in Reihe ordnen oder sie lassen sich dem Begriffe der Grösse unterordnen. Es ist \(3 > 2\) und \(3 > -4\) und \(9 : 10 > 8 : 9\), weil in \(9 : 10 = 81 : 90\) der Zähler grösser ist als der Zähler \(80\) in \(80 : 90 = 8 : 9\), während die Nenner gleich sind.“

Es fällt hier auf, dass das Ordnen in Reihe und das Unterordnen unter den Begriff Grösse als dasselbe behandelt wird. Ist ein Buch darum eine Grösse, weil es mit andern Büchern in Reihe geordnet werden kann? Ist es dabei ganz einerlei, wie die Ordnung geschieht? Dann wäre ja eigentlich Alles Grösse, z. B. die Schläge einer Uhr, die Buchstaben des Wortes „Grösse“. Wir können auch Schachfiguren in Reihe ordnen; sind sie darum | Grössen? Eher könnte man denken, dass die Anerkennung von Dingen als Grössen der Anordnung vorhergegange und das Princip dazu lieferte.

Wenn sonst Dinge in Reihe geordnet sind, hat jedes Ding mindestens ein benachbartes. Das scheint hier nicht der Fall zu sein. Diese ganze Stelle ist nur zu verstehen, wenn die inhaltliche Arithmetik bekannt ist; und dann ist die formale überflüssig. Stellen wir uns auf den Thomaeschen formalen Standpunkt, so fehlt uns jede Angabe, wie die Zahlfiguren geordnet werden sollen. Dazu scheint freilich das Zeichen »»« dienen zu sollen; aber wir kennen dessen Bedeutung nicht. Nach der Idee der formalen Arithmetik müssten wir es als Figur
auffassen, die — wenigstens im Rechenspiele — keine Bedeutung hätte; über deren Handhabung aber Regeln gegeben wären. Indessen fehlen hier solche Regeln vollständig; und diese Auffassung verbietet sich dadurch, dass »3 > 2« als Bestandteil des Behauptungssatzes „Es ist 3 > 2“ auftritt, woraus zu entnehmen ist, dass ein Gedanke damit verbunden werden soll. »3 > 2« ist also nicht etwas, womit im Rechenspiele Veränderungen vorgenommen werden — vergleichbar einer Stellung von Schachfiguren —; sondern es wird ein Satz aus der Theorie des Spiels sein. Aus den früher (§ 109) entwickelten Gründen verwerfen wir hier den Gebrauch der Zahlfiguren und suchen den Inhalt in Worten auszusprechen, etwa so:

unräumliche Zahlfigur ist zu vergleichen mit einem Luftschloß; aber auch den Luftschlössern sind Schranken gesetzt. Die Phantasie verleih Flügel; aber auch diese werden zuletzt matt.

Wir bemerken, dass Thomae wie bei der Null auch beim Unendlichen die Gefahr von Widersprüchen sieht. Die von ihm selbst angeführten Regeln sind sämtlich erlaubende, können also nicht in Widerstreit mit einander gerathen, mag man nun nach ihnen Figuren behandeln, welche man wolle, und ob eine Achtfigur liegt oder steht, kann keinen Unterschied machen, wenn nicht noch besondere Regeln von den liegenden Achtfiguren gelten. Von solchen ist aber hier noch keine aufgeführt worden.

Nun ist der Heinesche Darstellung zu entnehmen, dass eine solche Reihe ins Unendliche fortlaufen solle. Um sie herzustellen, brauchten wir aber eine unendlich lange Tafel, unendlich viel Kreide und unendlich lange Zeit. Man mag es als unerhörth grausam schelten, einen so hohen Geistesflug durch einen so hausbacken Einwand niederschlagen zu wollen; aber damit wird dieser nicht widerlegt. Wenn man die Zahlen zu greifbaren Figuren macht und sich auf diese ihre Greifbarkeit stützt, um ihrer Existenz sicher zu sein, nun dann muss man sie auch allen Bedingungen eines solchen stofflichen Daseins unterwerfen. Hier erkennen wir ein sonderbares Verhängnis, dass bei Heine grade durch die Greifbarkeit der Zahlen die Existenz der Zahlenreihen und damit zugleich die der irrationalen Zahlen vernichtet wird, die doch durch eben diese Greifbarkeit gewährleistet werden sollte.

Heine stellt nun die Forderung auf, einer jeden Zahlenreihe ein Zeichen hinzuzufügen, und sagt:

„Man führt als Zeichen die Reihe selbst ein, diese in eckige Parenthesen gesetzt, sodass z. B. das zur Reihe a, b, c etc. gehörende Zeichen $[a, b, c$ etc.] ist.“

Um hiervon Gebrauch machen zu können, müsste man erst die Kunst erfinden, eine ins Unendliche fortlauende Reihe in Parenthesen zu setzen.

Heine definiert weiter:

„Allgemeinere Zahl oder Zahlzeichen heisst das zu einer Zahlreihe gehörende Zeichen.“
Demnach wäre eine in eckige Parenthesen gesetzte Zahlenreihe, falls es eine solche gäbe, eine allgemeinere Zahl. Wir erkennen hieraus, dass die Zahlenreihen nicht in ihrer ursprünglichen Nacktheit, sondern in ihrer Bekleidung mit eckigen Klammern den eigentlichen Genstand der Heineschen Betrachtung bilden sollen.

§ 125. Thomae sucht die Schwierigkeit, die das Fortlaufen einer Reihe ins Unendliche für die formale Arithmetik hat, durch eine Definition der unendlichen Folge zu umgehen. Er sagt im § 5:

"Eine Folge von (zunächst gemeinen) Zahlen \((a_1 \ a_2 \ a_3 \ldots a_n \ldots)\) heisst eine unendliche Folge, wenn kein Term in ihr ein letzter ist, sondern wenn nach einer zu gebenden Vorschrift immer wieder neue und neue Terme gebildet werden können."

Wenn wir nicht wüssten, wohinaus Thomae wollte, könnten wir an eine in sich zurücklaufende Anordnung von Zahlfiguren denken. Da dies offenbar nicht gemeint ist, so muss eine Folge von Zahlfiguren immer zwei Enden haben, und ein Term wird immer der letzte sein. Wegen des letzten mit „sondern“ anfangenden Satzes ist jedoch anzunehmen, dass „letzter“ hier nicht im gewöhnlichen Sinne zu nehmen ist. Ich setze hier unten eine Zahlenfolge hin

\[2 \ 3 \ 5\]

Wir erkennen wohl, wie vergeblich es ist, uns durch eine Definition über die Beschränktheit unseres Könnens täuschen zu wollen.

§ 126. Aber zu welchem Zwecke brauchen wir denn unendliche Zahlenfolgen? Aus der Beantwortung dieser Frage wird sich vielleicht deutlicher erkennen lassen, was wir unter

\[62\] Uebrigens ist der bestimmte Artikel vor „zu einer Zahlenreihe gehörende Zeichen" auffallend, da man ja verschiedene Zeichen derselben Zahlenreihe zuordnen kann, von welcher Möglichkeit Heine auch Gebrauch macht.

\[63\] Im Folgenden mag sie die Folge \(F\) heissen. Sie soll in den folgenden Betrachtungen als Beispiel zu Grunde gelegt werden.
Diesem Ausdrucke zu verstehen haben. Thomae schreibt:

„Eine Folge \((\delta_1 \delta_2 \delta_3 \ldots \delta_n \ldots)\) heisst eine Nullfolge, es wird ihr die Zahl Null durch das Gleichheitszeichen zugeordnet

\[0 = (\delta_1 \delta_2 \delta_3 \ldots \delta_n \ldots),\]

wenn die Zahlen \(\delta_1 \delta_2 \ldots \delta_n\) mit wachsendem Index beliebig klein werden, sodass für jede noch so kleine Zahl \(\sigma\) ein \(n\) so gefunden werden kann, dass alle Terme \(\delta_n, \delta_{n+1}, \delta_{n+2} \ldots\) absolut genommen kleiner als \(\sigma\) sind.“

Hier stören die Bezeichnungen. Wir wissen z. B. noch nicht, was ein Index bei einer Zahlenfolge ist. In dem Gebilde \((\delta_1 \delta_2 \delta_3 \ldots \delta_n \ldots)\) sieht man zwar Indices; aber diese Vereinigung von Buchstaben, Ziffern, Pünktchen und Klammern ist keine Zahlenfolge.

Wir werden wohl nicht fehlgehen, wenn wir unter dem Index eines Folge eine Ordnungszahl verstehen, die angibt, der wievielste dieser Term in der Folge ist. Das \(n\), von dem in der Thomaeschen Erklärung die Rede ist, wird also nicht eine Zahlfigur, sondern eine Zahl sein. Nehmen wir an, wir hätten als solches \(n\) in einem Falle gefunden \(9^{(9^n)}\). Dürfen wir nun die Worte „der \(9^{(9^n)}\)ter Term der Folge \(F\)“ gebrauchen? Nicht eher, als wir wissen, dass die Folge \(9^{(9^n)}\) Terme enthalte. Sonst ist „der \(9^{(9^n)}\)ter Term der Folge \(F\)“ ein Eigenname ohne Bedeutung, weil ein \(9^{(9^n)}\)ter Term einen \((9^{(9^n)} - 1)\) ten voraussetzt. Dabei ist zu beachten, dass Terme, die nicht hingeschrieben sind, nicht vorhanden sind; denn die Terme sind Zahlfiguren, und Zahlfiguren sind durch Schreiben erzeugte Gebilde. Könnten wir aber nicht vom \(9^{(9^n)}\)ten Term der Folge \(F\) sprechen mit dem Zusätze „falls er vorhanden wäre“? Ja, ebenso wie vom ältesten Manne, der auf dem hundertsten Grade nördlicher Breite wohnt, falls er vorhanden wäre. Man mag von solchem interessant fabuliren; aber in die Wissenschaft gehört es nicht hinein.

Wenn also Thomae unter \(\Rightarrow \delta_n\) « den \(n\) ten Term einer Folge versteht, so begiebt er sich ins Reich der Dichtung, sobald die Zahl \(n\) so gross ist, dass nicht mehr mit Sicherheit das Vorhandensein sovieler Terme angenommen werden kann. Wenn von einer noch so kleinen Zahl \(\sigma\) die Rede ist, müssen wir uns erinnern, dass „Zahl“ hier soviel wie „Zahlfigur“ be- deutet, dass auf der ganzen Erde nur eine endliche Menge von Zahlfiguren vorhanden ist und dass wir daran durch Hinschreiben neuer Zahlfiguren nichts ändern können. Man weise nicht auf unendlich viele mögliche Zahlfiguren hin; denn nur die wirklichen sind Zahlfiguren. Eine bloß mögliche ist gar keine Zahlfigur. Vielleicht haben wir eine Vorstellung einer Zahlfigur und halten es auch für möglich, eine solche hinzuschreiben; aber dann haben wir eben nur eine Vorstellung, keine Zahlfigur. Ferner ist es sehr zweifelhaft, ob es möglich sei, unendlich viele Zahlfiguren zu bilden. Von einer unbegrenzten Annäherung an die Zahlfiguren kann hier also garnicht die Rede sein, selbst wenn wir eine Beziehung zwischen Zahlfiguren zugeben wollten, die durch die Worte „absolut kleiner als“ bezeichnet würde.

\[\text{§ 127.}\]

Beim Worte „alle“ macht Thomae folgende Anmerkung:

„Da alle Terme nicht angeschrieben werden können, so ist unter „alle“ hier wie in ähnlichen Fällen zu verstehen, soviel man auch Terme bilden mag, oder, um negativ zu reden, von einem bestimmten Index ab ist kein Term \(> \sigma\)“

Hierbei ist einiges zu erinnern. Die Nullfolgen sollen ohne Zweifel unendlich sein; d. h. es soll möglich sein, immer neue und neue Terme zu bilden, d. h. hinzuschreiben. Nun wird hier gesagt, dass alle Terme nicht angeschrieben werden können. Daraus ist zu entnehmen, dass eine Nullfolge nach Thomae besteht erstens aus Termen, die angeschrieben sind, zweitens aus Termen, die nicht angeschrieben sind, aber angeschrieben werden können, und, wie es scheint, drittens aus Termen, die nicht angeschrieben werden können. Dem entsprechend würde etwa eine unendliche Häuserreihe bestehen erstens aus Häusern, die gebaut
sind, zweitens aus solchen, die nicht gebaut sind, aber gebaut werden können, und drittens aus Häusern, die weder gebaut sind, noch gebaut werden können. Eine solche Häuserreihe würde also, im Wirklichen anfangend, sich durch das Reich des bloß Möglichen bis ins Unmögliche erstrecken. Eine merkwürdige Häuserreihe!

In der inhaltlichen Arithmetik hat es ja nichts Befremdliches, zu sagen, dass alle Terme einer Folge nicht hingschrieben werden können; denn was da hingschrieben wird, sind Zeichen der Terme. Hierdurch werden die Terme selbst nicht geschaffen, und deren Bestand wird durch das Hinschreiben oder Nichthinschreiben gar nicht berührt. Ganz anders im Rechenspiele! Hier sind die Zahlzeichen selbst die Terme. Nicht hingschriebene Zahlzeichen sind so wenig vorhanden wie nicht gebaute Häuser. Wenn nur drei Terme angeschrieben sind, so besteht die Folge auch nur aus drei Termen. Wie könnte man hier noch sagen, dass alle Terme der Folge nicht angeschrieben werden können! Was kann im Rechenspiele eine Zahlenfolge anderes sein als ein Ganzes, eine Gruppe, bestehend aus geschriebenen Figuren? Wenn eine solche Gruppe nicht angeschrieben werden kann, so kann sie nicht entstehen. Und da es solche Zahlenfolgen nicht von Ewigkeit her gibt, so gibt es dann überhaupt keine und wird es keine geben. Wenn aber eine Zahlenfolge hingschrieben wird, so werden alle ihre Terme hingschrieben; denn nur in ihnen hat sie ihren Bestand.

Thomae gebraucht in seiner Anmerkung den Ausdruck „soviele man auch Terme bilden mag“; wenn hier statt „bilden mag“ stände „gebildet hat und bilden wird“, so wäre nichts dagegen zu sagen. Aber Terme, welche nur möglich sind, aber nie hingschrieben werden, sind in der formalen Arithmetik keine Terme.

Ebensowenig wie zu befürchten steht, dass die Bäume in den Himmel wachsen, können die Zahlenfolgen ohne Ende fortgesetzt werden. Jede wird einmal ihre grösste Länge erreicht haben. Betrachten wir unsere Folge F in diesem Augenblicke! Die Anzahl ihrer Terme sei dann n; der $(n-1)$ te Term sei eine Zweifigur, der n te eine Einsfigur. Wir werden dann vielleicht sagen können: alle auf den $(n-2)$ ten folgenden Terme sind kleiner als eine Dreifigur; ebenso auch: alle auf den $(n-1)$ ten folgenden Terme sind kleiner als eine Zweifigur, und endlich: alle auf den n ten folgenden Terme sind kleiner als eine Einsfigur; da nämlich auf den n ten kein Term folgt noch folgen wird. Negativ können wir auch sagen: Kein auf den n- Term folgender ist grösser als eine Einsfigur. Danach wäre also unsere Folge eine Nullfolge. Mit denselben Rechtfertigungen könnten wir behaupten: kein auf den n ten Term folgender ist kleiner als eine Neunfigur. Denn da es überhaupt keinen auf den n ten Term folgenden gibt, giebt es auch keinen solchen, der kleiner wäre als eine Neunfigur.

Das ist die Weise, wie Thomae Worte streng genommen verstanden werden müssen; aber offenbar sollen sie nicht so verstanden werden.
§ 129. Denken wir an folgenden Fall! Uns sei eine Vorschrift V gegeben zur Fortsetzung unserer Folge F. Wir können nun, nehmen wir an, ohne etwas über die zukünftige Länge unserer Folge zu wissen, aus der Beschaffenheit der Vorschrift den Satz folgern, dass alle Terme, wenn es einmal solche geben sollte, welche nach unserer Vorschrift hingeschrieben und durch einen Index grösser als hundert zu kennzeichnen wären, kleiner sein werden als eine Einsfigur. Wenn nun ein solcher Satz zu folgern ist für jede positive Zahlfigur σ statt der Einsfigur, wobei nur statt der Zahl hundert eine andere zu nehmen wäre, so wird Thomae die Folge wohl für eine Nullfolge erklären.

Hierbei muss jedoch immer im Auge behalten werden, dass die Menge der positiven Zahlfiguren eine endliche ist und stets bleiben wird.

Ferner bemerken wir, dass die Möglichkeit solcher Folgerungen von der Vorschrift hauptsächlich abhängt, diese aber durch die Folge F, wie sie uns vor Augen steht, garantiert ist. Das würde eher zur Definition einer Nullvorschrift als zu der einer Nullfolge berechtigen.

Da also die Vorschrift allein nicht hinreicht, und da nicht genau anzugeben ist, welche Sätze noch heranzuziehen wären, hat es eigentlich keinen Sinn, zu sagen, aus der Vorschrift folge das und das. Wir müssen es daher aufgeben, den Umstand, dass ein Satz aus der Vorschrift V folge, zur Definition zu gebrauchen. Wir können nur den Satz selbst so verwenden, den Satz etwa, dass es für jede positive Zahlfigur σ einen Index n gibt der Art, dass ein Term einer Folge kleiner ist als σ, wenn er nach der Vorschrift V gebildet ist und wenn sein Index grösser als n ist.

Aber ein hypothetischer Gedanke ist immer wahr, wenn die Bedingung nie erfüllt ist. So kann man immer mit Wahrheit behaupten: wenn ein | Mann ohne Nahrung tausend Jahre alt geworden ist, bekommt er grüne Haare. Es kann uns hier also zur Definition der Nullfolge nichts nützen, dass wir angeben, was unter Bedingungen stattfinden würde, die nicht erfüllt sind und nie erfüllt sein werden.

§ 131. Wir erkennen hier das unheilbare Missverhältnis zwischen dem, was die Einführung des Irrationalen erfordert, und dem, was die formale Arithmetik bieten kann. Um das Irrationale einzuführen, brauchen wir unendlich viele Zahlen, und die formale Arithmetik hat von Zahlfiguren nur eine endliche Menge. Daran können alle Definitionen, kann alles Drehen und Wenden nichts ändern. In der That setzt ja auch Thomae unendlich viele Terme seiner
Folgen voraus, indem er Zeichen wie \(\delta \) ohne obere Grenze für \(n \) als Vertreter bedeutungsvoller Eigennamen gebraucht, obwohl es in unendlich vielen Fällen nichts giebt, was durch ein solches Zeichen bezeichnet werden könnte.

Wenn eine unendliche Zahlenfolge aus Zahlfiguren und weiter nichts besteht, wenn Zahlfiguren durch Schreiben erzeugte Gebilde sind, so kann auch eine solche Zahlenfolge hingeschrieben werden. Man thue es! Was wird man erhalten? Eine Reihe, die mit einer Figur anfängt und mit einer Figur endet. Nun kann man ja eine Definition geben, nach der diese so hingschriebene Folge dennoch eine unendliche ist; aber was nützt es? Die Unendlichkeit, welche wir zur Einführung des Irrationalen brauchen, erhalten wir so doch nicht. Was nützt uns das Wort „unendlich“, wenn uns die Sache fehlt, auf die es ankommt!

Da die Wirklichkeit nicht hinreichend, soll die Möglichkeit oder gar die Unmöglichkeit aus- helfen, wie wir gesehen haben, vergebens. Wenn bloß mögliche Figuren ein Ersatz für wirkliches sein könnten, brauchten wir die wirklichen nicht.

Dieser Sachverhalt wird dadurch verhüllt, dass die inhaltliche Arithmetik immer unwill- kürlich zur Ergänzung herangezogen wird. Sie schimmert in der That überall so deutlich durch die Hülle der formalen, dass wir sie manchmal allein zu sehen glauben. Man bedenkt aber dabei nicht, dass Vieles, was in der inhaltlichen Arithmetik seinen guten Grund hat, in der formalen unberechtigt ist. Man vergisst immer wieder die tief greifenden Unterschiede. Mancher Leser hat vielleicht unsere Einmischung der Zeit als ganz unmathematisch ver- dammt, dass wir z. B. von einer Folge angenommen haben, ihre Länge ändre sich in der Zeit. Dieser Tadel wäre auf dem Standpunkte der eigentlichen oder inhaltlichen Arithmetik ganz berechtigt; in der formalen aber wird durch die Sache selbst die Zeit eingeführt; denn während die eigentlichen Zahlen zeitlos sind, entstehen und vergehen die Zahlfiguren in der Zeit, in ihr geschehen auch die Spielhandlungen.

§ 132. Thomae schreibt:
„Die einfachste Nullfolge ist natürlich \((0 \, 0 \, 0 \ldots 0 \ldots)\).“

Wie wir uns auch drehen und wenden mögen, wir gelangen nicht zu einer Auffassung unserer Figurengruppe, die mit dem Grundgedanken der formalen Arithmetik verträglich wäre.

§ 133. D. Sache wird noch schwieriger, wenn wir statt der Zahlfiguren Buchstaben mit Indices haben. Über den Gebrauch der Buchstaben in der formalen Arithmetik ist nichts gesagt, obwohl er von dem in der inhaltlichen abweichen wird. Wie ist z. B. eine Gruppe von Buchstaben mit Indices aufzufassen, welche wir in dem Satze „Eine Folge von zunächst gemeinen Zahlen \((a_1 \ a_2 \ a_3 \ldots a_n \ldots)\) heisst eine unendliche Folge“ haben? Das erinnert an Wendungen wie „ein Feldherr Caesar“. Hier ist „Caesar“ Eigenname und man könnte auch \((a_1 \ a_2 \ a_3 \ldots a_n \ldots)\) als Eigennamen einer Zahlenfolge auffassen. Aber offenbar soll hier keine bestimmte Folge bezeichnet werden. Ebenso wenig ist diese Gruppe selbst eine Zahlenfolge. Man kann nun vermuten, sie deute eine Folge nur an, wie man etwa sagt „eine Primzahl \(p\)“. Hier ist der Buchstabe zwar kein Eigenname, vertritt aber einen solchen. Man schreibt Buchstaben statt der Eigennamen, um der Betrachtung Allgemeinheit zu verleihen. Es ist aber immer möglich, auf einen bestimmten Fall zu kommen, indem man die Buchstaben durch Eigennamen ersetzt, z. B. statt des Buchstaben \(\alpha\) den Eigennamen \(7\) schreibt. Man beachte, den Eigennamen, nicht die Figur! Wenn man dem entsprechend in unserem Falle \(\alpha_1 \alpha_2 \alpha_3 \ldots \alpha_n \ldots\) als Vertreter von Eigennamen und zwar von Zahlzeichen annähme, so erhielte man beim Uebergange zu einem besondern Falle etwa \((3 \ 7 \ 1 \ldots 2 \ldots)\), und hierin bezeichnete jedes Zahlzeichen eine Zahl. Was freilich das Ganze bezeichnen sollte, bliebe unklar, weil darüber, was eine solche Verbindungsweise von Zeichen bedeute, keine Erklärung vorliegt. Jedenfalls befänden wir uns auf dem Boden der inhaltlichen Arithmetik. Aber selbst, wenn wir fehlerhafterweise die Zahlzeichen als Figuren betrachten wollten, bezeichnete die ganze Figurengruppe weder eine Zahlenfolge, noch wäre sie eine solche, wie wir oben gesehen haben.

Wir gelangen demnach zu keiner befriedigenden Auffassung von \((a_1 \ a_2 \ a_3 \ldots a_n \ldots)\), wenn wir es in seine Bestandteile auflösen. Wir werden es also ohne Rücksicht auf seine Zusammensetzung annehmen müssen. Dann aber wird ein einzelner Buchstabe dieselben Dienste leisten, und wir werden sagen können „eine Zahlenfolge \(F\)“, wie wir etwa sagen „eine Primzahl \(p\)“.

§ 134. Nun fährt Thomae im § 5 fort:
„Einer solchen Folge ordnen wir ein Zeichen zu und drücken die Zuordnung durch das Gleichheitszeichen aus,
\[
a = (a_1 \ a_2 \ a_3 \ldots a_n \ldots)\]“

Diese Zuordnung eines Zeichens als besonders bedeutsame Handlung haben wir schon bei G. Cantor gesehen; sie findet sich auch bei Heine. Der links stehende Buchstabe \(a\) vertritt hier offenbar einen Eigennamen. Dasselbe thut aber die rechte Seite. Wir können dafür wie oben einen einzelnen Buchstaben \(F\) schreiben
\[
\alpha = F
\]
Wenn wir nun auf einen besondern Fall kommen wollen, so müssen wir sowohl für \(F\) als auch für \(\alpha\) einen Eigennamen einsetzen. Dann haben wir aber schon einen Eigennamen der betrachteten Folge, nämlich den für \(F\) eingesetzten, und brauchen ihr nicht erst einen zuzuordnen.

Nehmen wir einen besondern Fall! Wir schreiben mit Kreide auf eine Tafel von links nach rechts aufeinander folgend eine Zweifigur, eine Dreifigur und eine Fünffigur. Nehmen wir an,
Das so Erzeugte sei eine unendliche Zahlenfolge nach Thomae. Um von ihr etwas aussagen zu können, geben wir ihr als Zeichen oder Eigennamen ein gespiegeltes lateinisches \(R \rightarrow \) und können nun z. B. schreiben:

"Die Folge \(I \) besteht aus einer \(R \) Zweifigur, einer Dreifigur und einer Fünffigur". Wenn wir zu irgendeinem Zwecke dieser Folge noch ein anderes Zeichen geben wollen, so steht dem nichts im Wege, und wir können z. B. schreiben

\[
IO = I
\]

worin das Gleichheitszeichen die Bedeutung des Zusammenfallens, der Identität, also dessen hat, was wir Gleichheit nennen. Diese Gleichung ergibt sich aus der Thomae'schen

\[
a = (a_1 a_2 a_3 \ldots a_n \ldots)
\]

dadurch, dass wir links und rechts statt der bloß andeutenden Zeichen Eigennamen setzen. Nun ist es freilich unwahrscheinlich, dass hiermit Thomaes Meinung getroffen sei. Wahr-scheinlicher ist es, dass er uns anweisen würde, links von unserer Folge ein Gleichheitszeichen und davon wieder links unser Zeichen \(I \) zu schreiben, sodass eine Zeichen- und Figurengruppe von der Form

\[
I = 2 3 5
\]

entstände. Und hierdurch, würde er etwa sagen, werde das Zeichen \(I \) unserer Folge zu-geordnet. Das wäre freilich unhalbar. Zunächst nämlich wäre die linke Seite der Gleichung

\[
\alpha = (a_1 a_2 a_3 \ldots a_n \ldots)
\]

ganz anders behandelt als die rechte. Links wäre für \(\alpha \) ein Eigenname \(I \) eingesetzt, rechts aber der Gegenstand (die Folge) selbst. Das wäre gegen alle Grundsätze des Buchstabengebruchs in der Mathematik. Und so wäre denn ein seltsames Gemisch von Zeichen und Figuren entstanden. Das Gleichheitszeichen wäre weder als blosse Figur wie im Spiele, noch auch so gebraucht, wie Thomae es in der Theorie des Spiels verwendet, noch auch so, wie es in der inhaltlichen Arithmetik gebraucht wird, sondern es sollte besagen, dass das links stehende Zeichen \(I \) die rechts stehende Folge bezeichnen solle. Die Vertauschbarkeit der linken und der rechten Seite der Gleichung gälte hierbei nicht; denn stände die Folge links, \(I \) aber rechts, so wäre die Folge damit als Zeichen für die Figur \(I \) hingestellt, was etwas ganz anderes ist.

Ob wir nun hiermit Thomaes Meinung getroffen haben oder nicht, jedenfalls ist es nicht erlaubt, so willkürlich mit dem Gleichheitszeichen umzuspüren, alsob es noch garnicht vorgekommen wäre.

§ 135. Die folgenden Sätze scheinen es zu bestätigen, dass wir Thomaes Meinung richtig getroffen haben. Sie lauten:

"Für dieses Zeichen \(a \) nehmen wir unter Umständen eine gemeine Zahl. Wenn nämlich von einem bestimmten Term ab dieselbe Zahl immer wiederkehrt, sodass

\[
a_{n+1} = a_{n+2} = a_{n+3} = \ldots = a
\]

ist, so wählen wir die Zahl \(a \) als Zeichen für die Folge. Aber auch dann, wenn in \((a_1 a_2 a_3 \ldots a_n \ldots) \) die Terme sich von der Folge \((a a a \ldots a) \) nur bez. um die Terme einer Nullfolge unterscheiden die wir sogleich de- | finiren, ordnen wir die Zahl \(a \) als Zeichen der Folge

\[
I = 2 3 5
\]
Hier ist zu erinnern, dass dabei verschiedene Dinge dasselbe Zeichen bekommen, was gegen alle Grundsätze der Bezeichnung verstößt. Das wird durch die Erinnerung an die inhaltliche Arithmetik freilich verhüllt. Der Gedanke schimmert hier wohl durch, dass alle diese Folgen eine und dieselbe Zahl in unserm Sinne, ein und dasselbe Grössenverhältnis bestimmen in einer Weise, die hier freilich nicht angetan ist, weil dazu erst die Frage „was ist ein Grössenverhältnis?“ beantwortet sein müsste. Wenn Thomae nun der Folge ein Zeichen α zuordnet, so will er im Grunde wohl, ohne sich dessen ganz bewusst zu werden, jenem Grössenverhältnisse das Zeichen zuordnen, und dann ist die Eindeutigkeit des Zeichens in der That gewahrt. Diese feierliche Zeichenzuordnung soll ein Ersatz sein für das, was eigentlich geleistet werden sollte, nämlich die Erklärung des Grössenverhältnisses und den Nachweis, dass es solche gibt. Da man die Frucht nicht hat, bietet man wenigstens die leeren Fruchtschalen dar.

Nun erhebt sich die Frage, ob die Zahlfiguren, die als Terme einer Folge auftreten, als Zeichen anzusehen seien, die selbst wieder Folgen bedeuten. Dann müsste auch die Folge, deren Term sie sind, etwas bedeuten; aber was denn? Man käme zu einem Rückschreiten ins Unendliche, wenn man die Term eine Folge immer wieder als Zeichen für andere Folgen ansehen wollte. Danach ist wohl anzunehmen, dass die Zahlfiguren, wenn sie Term sind, nicht als Zeichen aufzufassen sind. Aber es ist fraglich, ob eine solche Scheidung durchführbar sei. Jedenfalls wäre diese doppelte Verwendungsweise gleichgestalteter Gebilde bedenklich.

\[a_1 \ a_2 \ldots a_n \ldots\] durch das Gleichheitszeichen zu¹.

¹Was bedeutet das Gleichheitszeichen in

\[a_{n+1} = a_{n+2} = a_{n+3} = \ldots = a\]

²Im Original fehlt rechtes Zeichen [Fehlertyp: interp | Rev.: bonn]
von Zahlfiguren zur Verfügung steht.

Ueber die Tragweite des Grundgedankens der formalen Arithmetik sind wohl viele Mathematiker im Unklaren. Man fasst die formale Arithmetik, wie es scheint, im Wesentlichen auf als die inhaltliche vermindert um die Verpflichtung, die Bedeutungen der Zeichen anzugeben. In der That kommt die Auffassung der Zahlen als Figuren eigentlich nur im Anfange zur Geltung, wo jene Verpflichtung drückend ist. Später gleitet man, ohne es selbst zu merken, in die inhaltliche Arithmetik zurück. Und doch hat jene Auffassung auch Folgen, die lästig werden können; sie bewirkt eine so völlige Veränderung der Arithmetik von Grund aus, dass es kaum zulässig scheint, den Namen „Arithmetik“ für die formale ebenso wie für die inhaltliche zu gebrauchen. Nur dadurch kann sich die formale Arithmetik am Leben erhalten, dass sie sich selbst untreu wird.

Erleichtert wird ihr dies Scheinleben durch die Eile, mit der die Mathematiker meistens über die ersten Grundlagen ihrer Wissenschaft, wenn sie sich überhaupt damit befassen, hinweggehen, um zu bedeutenderen Gegenständen zu gelangen. Vieles wird ganz übersehen, Andere nur im Fluge berührt, nichts im Einzelnen durchgeführt. So kann eine Theorie den Schein der Festigkeit annehmen, die bei jedem ernstten Versuch einer wirklichen Durchführung sogleich ihre Schwäche offenbaren würde. Und hiermit ist der Weg der Widerlegung gewiesen. Man muss die nur eben betretenen Gedankenpfade weiter verfolgen, um zu sehen, wohin sie führen. Ernst machen mit der formalen Arithmetik, das ist sie überwinden; und so haben wir es gemacht.

§ 138. Wir wenden uns nun zu der Darlegung, die R. Dedekind in seiner Schrift über Stetigkeit und irrationale Zahlen gegeben hat. Er sagt dort im § 1, S. 6:

„Soll ausgedrückt werden, dass die Zeichen a und b eine und dieselbe rationale Zahl bedeuten, so setzt man sowohl a = b wie b = a.“

Hier ist die Schärfe der Unterscheidung zwischen dem Zeichen und dem, was es bedeutet, erfreulich und bemerkenswürth, ebenso die Auffassung des Gleichheitszeichens, die genau mit unserer übereinstimmt. Thomae bemerkt dagegen:

„Denn wenn Gleichheit oder das Gleichheitszeichen = nur die Identität bedeuten sollte,

66 Wer Freude am Paradoxen hat, könnte vielleicht sagen: die richtige Auffassung der formalen Theorie besteht darin, dass man sie falsch auffasst.

68 Braunschweig: bei Vieweg Sohn, 1892.

69 A. a. O., S. 2
so würden wir bei der trivialen Erkenntnis, oder, wenn man lieber will, Denknothwendigkeit \(a \) ist \(a (a = a) \) stehen bleiben.”

Aus dem angeführten Satze von Dedekind geht hervor, dass für ihn die Zahlen nicht Zeichen, sondern Bedeutungen der Zeichen sind.

Diese drei Punkte:
1) die scharfe Unterscheidung des Zeichens von dessen Bedeutung;
2) die Erklärung des Gleichheitszeichens als Identitätszeichen;
3) die Auffassung der Zahlen als Bedeutungen der Zahlzeichen, nicht als diese selbst hangen aufs Engste zusammen und lassen Dedekinds Ansicht im schroffsten Gegensatz zu jeder formalen Theorie erscheinen, welche die Zeichen oder | Figuren als die eigentlichen Gegenstände der Arithmetik betrachtet. Um so auffallender ist die Billigung, die Dedekind der Heineschen Auffassung widmet, indem er in Bezug auf den oben von uns besprochenen Aufsatz sagt:

„Dem Wesen nach stimme ich zwar vollständig mit dem Inhalte dieser Schrift überein, wie es ja nicht anders sein kann.”

\section*{§ 139.} Nachdem Dedekind eine solche Eintheilung des Systems der rationalen Zahlen in zwei Klassen, bei welcher jede Zahl der ersten Klasse kleiner ist als jede Zahl der zweiten, einen Schnitt genannt hat, nachdem er dann gezeigt hat, dass jede rationale Zahl einen Schnitt oder eigentlich zwei Schnitte hervorbringt, dass es aber Schnitte gibt, die durch keine rationale Zahl hervorgebracht werden, sagt er im § 4, S. 14:

„Jedesmal nun, wenn ein Schnitt \((A_1, A_2) \) vorliegt, welcher durch keine rationale Zahl hervorgebracht wird, so erschaffen wir uns eine neue, eine irrationale Zahl \(a \), welche wir als durch diesen Schnitt vollständig definiert ansehen; wir werden sagen, dass die Zahl \(a \) diesem Schnitt entspricht, oder dass sie diesen Schnitt hervorbringt.”

In diesem Schaffen liegt der Kern der Sache. Zunächst ist zu bemerken, dass es ganz verschieden ist von dem, was man in der formalen Arithmetik thut, wenn man eine neue Art von Figuren einführt und besondere Regeln für deren Handhabung. Dort liegt die Schwierigkeit darin, zu erkennen, ob diese neuen Regeln mit den früher aufgestellten in Widerstreit geraten können, und solchen Widerstreit etwa auszugleichen. Hier handelt es sich um die Frage, ob ein Schaffen überhaupt möglich sei; ob es, wenn möglich, schrankenlos möglich sei; oder ob gewisse Gesetze beim Schaffen beachtet werden müssen. Im letzten Falle wäre erst zu beweisen, dass jenen Gesetzen gemäss die Berechtigung zum Schaffen bestände, bevor man die Schöpfung vollziehen dürfte. Diese Untersuchungen fehlen hier vollständig und damit fehlt die Hauptsache; es fehlt das, wovon die Bündigkeit der Beweise abhängt, die mit irrationalen Zahlen geführt werden.

Dass die Schaffensmacht jedenfalls, wenn sie besteht, nicht schrankenlos sein kann, sieht man daraus, dass offenbar kein Gegenstand geschaffen werden kann, der widersprechende Eigenschaften in sich vereinigt.
§ 140. Zu demselben Ergebnisse führt folgende Betrachtung. In der Mathematik ist der Fall nicht selten, dass man zum Beweise eines Satzes einen Hilfsgegenstand braucht; das ist ein Gegenstand, von dem im Satze selbst nicht die Rede ist. In der Geometrie hat man Hilfslinien, Hilfspunkte. In der Arithmetik kommen ebenso Hilfzahlen vor. Es wird z. B. eine Quadratwurzel aus \(-1\) gebraucht, um Sätze zu beweisen, die nur von reellen Zahlen handeln. Wenn wir in der Zahlentheorie mittels der Indices beweisen, dass die Kongruenzen \(\alpha^\delta \equiv 1 \) und \(\alpha^\delta \equiv 1 \) beim Primzahlmodul \(p \) die selben Wurzeln haben, sofern \(\delta \) der grösste gemeinsame Theil von \(n \) und \(p-1 \) ist, so brauchen wir eine primitive Wurzel, nämlich die Basis der Indices, als Hilfzahl. Auch in unsern Beweisen sind schon Hilfsgegenstände vorgekommen; man vergl. z. B. Bd. 1, § 94. Dort haben wir auch gesehen, wie wir uns eines solchen Gegenstandes wieder entledigen; denn in dem zu bewiesenden Satze soll ja von ihm keine Rede sein, obwohl wir einige seiner Eigenschaften zum Beweise brauchen. So brauchen wir in dem oben erwähnten zahlentheoretischen Satze die Eigenschaft, primitive Wurzel bei der Primzahl \(p \) zu sein. Wir haben dann zunächst Bedingungssätze mitzuführen, die ausdrücken, dass ein Gegenstand jene Eigenschaften habe. Kennen wir einen solchen Gegenstand, so können wir die Bedingungen zum Verschwinden bringen. Wenn wir keinen solchen Gegenstand angeben können, wie es in unserm Beispiele der Fall ist, wo nicht von einer oder jener bestimmten Primzahl, sondern von einer Primzahl im Allgemeinen die Rede ist, so müssen wir wenigstens beweisen, dass es einen solchen Gegenstand — eine primitive Wurzel bei der Primzahl \(p \) — immer gebe. Wie sehr würde dies erleichtert, wenn man sich die erforderlichen Gegenstände ohne Weiteres schaffen könne! Wenn man nicht weiss, ob es eine Zahl gebe, deren Quadrat \(-1\) ist, nun so schafft man sich eine. Wenn man nicht weiss, ob es zu einer Primzahl eine primitive Wurzel gebe, nun so schafft man sich eine. Wenn man nicht weiss, ob es zu einer Primzahl eine primitive Wurzel gebe, nun so schafft man sich eine. Dies ist leider zu bequem, als dass es richtig sein könnte. Es werden gewisse Schranken für das Schaffen anerkennen sein. Das Wichtigste für einen Arithmetiker, der die Möglichkeit des Schaffens im Allgemeinen anerkennt, wird sein, die Gesetze in einleuchtender Weise zu entwickeln, die dabei zu beachten sind, um dann vor jeder einzelnen Schöpfungsthat zu beweisen, dass sie jenen Gesetzen gemäss erlaubt sei. Sonst wird Alles ungenau, und die Beweise sinken zu einem blossen Scheine, zu einer wohlthuenden Selbsttäuschung herab.

§ 141. Hankel sagt im Anfange des 7. Abschnittes seiner Theorie der complexen Zahlensysteme:

„Wir betrachten in diesem Abschnitte Zahlen \(\alpha, \beta, \ldots \), welche linear aus Einheiten \(t_1, \ldots t_n \) zusammengesetzt sind, deren Multiplicationsregeln in den Relationen

\[
\begin{align*}
t_1 t_1 &= 0, \\
t_2 t_2 &= 0, \\
t_n t_n &= 0, \\
t_k t_m &= -t_m t_k
\end{align*}
\]

ausgesprochen sind.“

Mit diesen sogenannten Einheiten beweist er dann z. B. den Multiplicationssatz der Determinanten, oder vielmehr er bildet sich ein, ihn zu beweisen. Eigentlich ist es nur ein verblüffendes Taschenspielerstück; denn nirgends ist bewiesen, dass es solche Einheiten gebe, nirgends ist bewiesen, dass man das Recht habe, sie zu schaffen. Nicht einmal das ist bewiesen, dass die Eigenschaften, die diesen Einheiten beigelegt werden, einander nicht widersprechen. Ja, was diese Eigenschaften eigentlich sind, bleibt dunkel; denn nirgends ist
gesagt, was in diesem Falle unter einem Producte zu verstehen sei. Eigentlich müssen die oben angeführten Sätze \(\varepsilon_1 \varepsilon_1 = 0 \) u. s. w. als Bedingungen mitgeführt werden, und von diesen Bedingungen muss auch das Multiplicationsgesetz der Determinanten abhängig erscheinen. Es von diesen zu befreien, bleibt eine bei dieser Art der Beweisführung ungelöste Aufgabe. Es wäre möglich, wenn \(\varepsilon_1 \varepsilon_2, \varepsilon_2 \varepsilon_3, \ldots, \varepsilon_{n-1} \varepsilon_n \) u. s. w. Eigennamen von Gegenständen wären, die jenen Bedingungen genügten. Wir wissen nicht, was ein Product und was eine Summe bei Zahlen dieser Art ist. Nehmen wir aber einmal an, wir wüssten es, so könnten wir von \(\varepsilon_1 \) die Eigenschaft, dass \(\varepsilon_1 \varepsilon_1 = 0 \) wäre, eine Eigenschaft, die es mit \(\varepsilon_2, \varepsilon_3 \) u. s. w. teilte. Ferner könnten wir gewisse Beziehungen, in denen \(\varepsilon_1 \) zu den ebenso unbekannten \(\varepsilon_2, \varepsilon_3 \) u. s. w. stehen sollten. Es ist klar, dass hierdurch \(\varepsilon_1 \) nicht bestimmt ist. Wir wissen nicht, wieviele solche Gegenstände und ob es überhaupt deren gibt. Nicht einmal die Klasse ist bestimmt, der diese Gegenstände etwa angehören. Nehmen wir an, eine solche Klasse enthalte die Gegenstände

\[
\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_9.
\]

Dann hat die Klasse, die nur die Gegenstände

\[
\varepsilon_1 \varepsilon_2 \varepsilon_3, \varepsilon_4 \varepsilon_5 \varepsilon_6, \varepsilon_7 \varepsilon_8 \varepsilon_9
\]

enthält, dieselbe allgemeine Beschaffenheit, desgleichen auch die Klasse, die nur die Gegenstände

\[
\varepsilon_1 \varepsilon_4 \varepsilon_7, \varepsilon_2 \varepsilon_5 \varepsilon_8, \varepsilon_3 \varepsilon_6 \varepsilon_9
\]

enthält und viele andere. Da demnach nicht einmal die Klasse bestimmt ist, der diese Gegenstände angehören, so sind es um so weniger diese selbst, und es ist unmöglich, \(\varepsilon_1 \varepsilon_2, \varepsilon_2 \varepsilon_3 \) u. s. w. als bedeutungsvolle Eigennamen aufzufassen, ähnlich wie \(\varepsilon_2, \varepsilon_3 \). Es bleibt nur übrig, sie wie \(\varepsilon_1 \varepsilon_2, \varepsilon_2 \varepsilon_3 \) als Gegenstände andeutend, nicht als Gegenstände nennend aufzufassen. Dann aber kommt es darauf an, ob es solche gibt, welche den oben angeführten Bedingungen genügen. Diese sind nicht einmal vollständig; denn es fehlt die Bedingung, dass das Product aus einer gewöhnlichen Zahl und einem Producte aus einigen der \(\varepsilon \) verschieden ist, von einem Producte aus einer andern gewöhnlichen Zahl und demselben Producte der \(\varepsilon \). Sonst könnte man von

\[
a \cdot \varepsilon_1 \varepsilon_2 \varepsilon_3 = b \cdot \varepsilon_1 \varepsilon_2 \varepsilon_3
\]

nicht auf \(a = b \) schliessen.

Nun der Beweis, dass es solche Gegenstände gebe, fehlt. Vielleicht hat Hankel geglaubt, sie mit den oben angeführten Worten zu schaffen; aber auch den Beweis, dass er zu solchem Schaffen berechtigt gewesen sei, ist er schuldig geblieben.

Uebrigens stehen manche Beweise, die man mit der imaginären Einheit führt, nicht auf festeren Füssen, als der eben erwähnte Hankels. Wenn der Fehler bei diesem mehr in die Augen fällt, so liegt das nicht an einem wesentlichen logischen Unterschiede, sondern daran, dass man sich an die imaginäre Einheit schon mehr gewöhnt hat, als an die alternirenden Zahlen. Man braucht ein Wort oder Zeichen als Eigennamen nur recht oft zu gebrauchen, und es wird der Eindruck entstehen, dass dieser Eigennamen etwas bezeichne, und dieser Eindruck wird sich mit der Zeit so verstärken, dass zuletzt fast niemand daran zweifelt.
§ 143. Die schöpferischen Definitionen sind eine Erfindung ersten Ranges. Otto Stolz schreibt⁷⁰:

„6. Definition. In dem Falle, wo \(\lim (f : g) \) eine positive Zahl oder \(+\infty \) ist, soll ein von den Momenten verschiedenes Ding, mit \(u(f) : u(g) \) bezeichnet, existiren, welches der Gleichung

\[
u(g) \cdot \{u(f) : u(g)\} = u(f)
\]
genügt.“

Vergleichen wir damit Folgendes:

„Definition. Wenn die Punkte \(A, B, C, D, E, F \) so liegen, dass die Verbindungslinien \(AD, BE, CF \) durch denselben Punkt gehen, so soll ein Ding existiren, welches eine Gerade ist und durch die Schnittpunkte der Verbindungsgeraden \(AB \) und \(DE, BC \) und \(EF, CA \) und \(FD \) hindurchgeht.“

Ein anderes Beispiel einer schöpferischen Definition finden wir auf S. 34 des angeführten Werkes. Wir lesen da:

»1. Definition. „Wenn im Falle \(D_1 \) der Gleichung \(b \circ x = a \) keine Grösse des Systemes \(I \) genügt, so soll sie durch \textbf{e} \textit{i} \textbf{n} und \textbf{n}ur \textbf{e} \textit{in} \textbf{e} \textit{u} \textit{u} \textit{e} \textit{n}es, in \(I \) \textbf{n}icht \textbf{v}orhandenes \text{Ding} befriedigt werden, das mit \(a \circ b \) bezeichnet werden kann, weil dieses Symbol noch nicht vergriffen ist. Man hat also

\[
b \circ (a \circ b) = (a \circ b) \circ b = a
\]

„Da die neuen Objecte keine weiteren Eigenschaften besitzen, so kann man ihnen solche nach Belieben beilegen, wenn sie sich nur unter einander nicht widersprechen.«

Die Schöpfung vollzieht sich also in verschiedenen Schritten. Nach dem ersten ist das Ding allerdings da, aber, so zu sagen, splitternackt, der notwendigsten Eigenschaften entbehrend, die ihm erst durch weitere Schöpfungsthaten beigelegt werden müssen, worauf es dann als glücklicher Besitzer dieser Eigenschaften zu begrüssen sein wird. Freilich wird hier die schöpferische Macht durch den Zusatz eingeschränkt, dass jene Eigenschaften einander nicht widersprechen dürfen; eine selbstverständliche, aber sehr folgenschwere Einschränkung. Woran erkennt man, dass Eigenschaften einander nicht widersprechen ? Kein anderes Kennzeichen scheint es dafür zu geben, als dass sich die fraglichen Eigenschaften an denselben Gegenstände vorfinden. Dadurch wird aber die Schöpfungsmacht, die viele Mathematiker sich zuerkennt, so gut wie wertlos. Denn sie müssen ja nun, bevor sie eine Schöpfungsthät vollziehen, beweisen, dass die Eigenschaften einander nicht widersprechen, die sie dem zu schaffenden oder schon geschaffenen Gegenstande beilegen wollen; und das können sie wohl nur dadurch, dass sie beweisen, es gebe einen Gegenstand, welcher diese Eigenschaften sämmtlich habe. Können sie aber das, so brauchen sie nicht erst einen solchen zu schaffen.

⁷¹Von \(\circ \) wird auf S. 26 gesagt: „Die Verknüpfung \(\circ \) wird als Thesis bezeichnet.“ Man könnte aus dem bestimmten Artikel schliessen, dass das Zeichen \(\circ \) eine bestimmte Bedeutung habe. Das ist jedoch nicht der Fall: es soll eine Verknüpfung nur andeutet. Was aber unter „Verknüpfung“ zu verstehen sei und unter „Resultat einer Verknüpfung“, wird nicht gesagt.
§ 144. Oder giebt es vielleicht noch eine andere Art, die Widerspruchsfreiheit zu beweisen? Wenn es eine gäbe, so wäre das von der höchsten Bedeutung für alle Mathematiker, die sich eine Schöpfungsmacht zuschreiben. Und dennoch scheint sich kaum jemand zu bemühen, eine solche Beweisart ausfindig zu machen. Warum nicht? Wahrscheinlich in der Meinung, es sei überflüssig, die Widerspruchs freiheit zu beweisen, da ja jeder Widerspruch sofort bemerkt werden würde. Wie schön, wenn es so wäre! Wie einfach gestalteten sich dann alle Beweise! Der des pythagoräischen Lehrsatzes würde etwa lauten:

„Angenommen, das Hypotenusenquadrat sei nicht flächengleich den Kathetenquadraten zusammengenommen, so ergäbe sich ein Widerspruch zwischen dieser Annahme und den bekannten Axiomen der Geometrie. Folglich ist unsere Annahme falsch, und das Hypotenuse quadrat ist genau flächengleich den Kathetenquadraten zusammengenommen.“

Ebenso leicht wäre das Reciprocitätsgesetz für quadratische Reste zu beweisen:

„Es seien \(p \) und \(q \) Primzahlen, von denen wenigstens eine \(1 \) beim Modul \(4 \) kongruent sei, und es sei \(p \) quadratischer Rest von \(q \). Nehmen wir nun an, \(q \) wäre nicht quadratischer Rest von \(p \), so wäre darin offenbar ein Widerspruch gegen unsere Voraussetzungen und die bekannten Grundgesetze der Arithmetik enthalten — wer es nicht sieht, zählt eben nicht mit —. Folglich ist unsere Annahme falsch, und \(q \) muss quadratischer Rest von \(p \) sein.“

Nach diesen Mustern wäre einfach jeder Beweis zu führen. Leider ist diese Weise zu einfach, um annehmbar zu sein. Wir sehen wohl, dass nicht jeder Widerspruch ganz offen zu Tage liegt. Es fehlt uns auch ein sicheres Kennzeichen für die Fälle, in denen man etwa aus dem Nichtoffenbar sein eines Widerspruchs auf sein Nichtbestehen schliessen könnte. Unter diesen Umständen muss wohl jene angebliche Schöpfmacht der Mathematiker als werthlos betrachtet werden, weil ihre Ausübung gerade in den Fällen, wo sie werthvoll wäre, an Bedingungen geknüpft ist, die, wie es scheint, nicht erfüllbar sind. Uebrigens, woher weiß man, dass die Vermeidung eines Widerspruchs das einzige ist, was beim Schaffen beachtet werden muss?

§ 145. Stolz nennt wie Thomae seine Auffassung formal. Es mag daher nicht überflüssig sein, auf den grossen Unterschied aufmerksam zu machen, der dennoch zwischen beiden Theorien besteht. Wo Stolz ein neues — jedenfalls unsinnliches — Ding schafft, das er mit einem Zeichen versieht, führt Thomae eine neue Art von Figuren ein mit den dazu gehörigen Regeln. So spricht Stolz von einem Dinge, mit \(u(f) : u(g) \) bezeichnet, ebenso von einem Dinge, das mit \(a\, b \) bezeichnet werden könne. Wir hätten diese Zeichen in Anführungszeichen eingeschlossen, um kenntlich zu machen, dass wir eben von den Zeichen, nicht von deren Bedeutung sprächen. Im Uebrigen unterscheidet Stolz zwischen Zeichen und Bezeich nern so scharf wie wir; und es fällt ihm gar nicht ein, die Zeichen selbst als die eigentlichen Gegenstände der Arithmetik hinzustellen. Stolzes Arithmetik ist eine inhaltliche trotz des von ihm gebrauchten Wortes „formal“; Man übersieht leicht über der Aehnlichkeit der Form die Verschiedenheit der Sache. In der That ist Thomaes Theorie eines arithmetischen Spielles eine ganz andere Wissenschaft als die Arithmetik Stolzes. Kein Satz, und wenn er genau denselben Wortlaut hätte, hat denselben Sinn bei Thomae und bei Stolz; denn bei jenem handelt er von physischen Gegenständen, den Figuren und willkürlich aufgestellten Regeln für deren Handhabung; bei diesem soll er von unsinnigen Gegenständen handeln. Offenbar sind es grundverschiedene Sachen, ob die Zahlen Figuren sind, über deren Handhabung Regeln aufgestellt werden; oder ob die Zahlen Bedeutungen von Zahlzeichen sind und geschaffen werden können. In beiden Fällen stossen wir auf Schwierigkeiten, die unüberwindlich scheinen. Bei Thomae bestehen sie darin, zu erkennen, ob die neuen Regeln mit den alten in Widerstreit geraten können, und solchen Widerstreit zu schlichten, bei Stolz, zu beweisen,
dass kein Widerspruch zwischen den Eigenschaften des zu schaffenden Dinges obwalte, wo-
bei auch die Eigenschaften der schon vorhandenen Dinge meist in Betracht kommen werden.
Dazu kommt noch der Zweifel, ob ein Schaffen überhaupt möglich sei.

Dedekind stimmt in seiner Auffassung des Schaffens mit Stolz überein; auch ihm sind die
Zahlen nicht Zeichen, sondern Bedeutungen der Zahlzeichen. Auch G. Cantor ist wohl dieser
Gruppe zuzuzählen, obwohl seine Meinung weniger scharf ausgeprägt ist²².

§ 146. Es ist uns hierbei wahrscheinlich geworden, dass ein eigentliches Schaffen dem
Mathematiker versagt ist, oder dass es wenigstens an Bedingungen geknüpft ist, die es wert-
hlos machen. Demgegenüber könnte man darauf hinweisen, dass wir doch selbst im 1. Bande
(§ 3, § 9, § 10) neue Gegenstände, nämlich die Werthverläufe geschaffen hätten. Was haben
wir denn dort gethan? oder zunächst: was haben wir nicht gethan? Wir haben nicht Eigen-
schaften aufgezählt und nun gesagt: wir schaffen ein Ding, das diese Eigenschaften habe.
Wir haben vielmehr gesagt: wenn eine Function (erster Stufe mit einem Argumente) und ei-
eine zweite Function so beschaffen sind, dass beide für dasselbe Argument immer denselben
Werth haben, so kann man dafür sagen: der Werthverlauf der ersten Function ist derselbe
wie der der zweiten. Wir erkennen dann etwas Gemeinsames beider Functionen an, und die-
es nennen wir sowohl den Werthverlauf der ersten Function, als auch den Werthverlauf der
zweiten Function. Dass wir das Recht zu dieser Anerkennung des Gemeinsamen haben, und
dass wir demgemäß die Allgemeinheit einer Gleichheit in eine Gleichheit (Identität) umset-
zen dürfen, müssen wir als logisches Grundgesetz ansehen. Diese Umsetzung ist nicht als
Definition zu betrachten; weder wird dadurch das Wort „derselbe“ oder das Gleichheitszei-
chen, noch das Wort „Werthverlauf“ oder eine Zeichenverbindung wie \(\text{ext} \in (\Phi(\varepsilon)) \), noch beides gleichzeitig erklärt. Denn der Satz
„Der Werthverlauf der ersten Function ist derselbe wie der der zweiten“
ist zusammengesetzt und enthält als Bestandteil das Wort „derselbe“, das als vollkommen
bekannt anzusehen ist. Ebenso ist das Zeichen \(\text{ext} \in (\Phi(\varepsilon)) = \text{ext} \alpha (\Psi(\alpha)) \) zusammengesetzt und enthält als Bestandteil das schon bekannte Gleichheitszeichen. Wenn wir also
unsere Festsetzung in I, § 3 als Definition auffassen wollten, so wäre darin allerdings gegen
unsern zweiten Grundsatz des Definirens gefehlt worden²³.

§ 147. Dass man von der erwähnten Möglichkeit der Umsetzung eigentlich schon immer
Gebrauch gemacht hat, ist ja klar; nur hat man das Zusammenfallen von den Functionen
selbst statt von den Werthverläufen ausgesagt. Wenn eine erste Function für dasselbe Argu-
ment allgemein denselben Werth hat wie eine zweite, pflegt man wohl zu sagen: „die erste
Function ist dieselbe wie die zweite“ oder „beide Functionen fallen zusammen“. Wiewohl
der Ausdruck von unserm abweicht, so ist doch auch hier die Allgemeinheit einer Gleichheit
in eine Gleichheit (Identität) umgesetzt ²⁴.

²² Auf welchem Standpunkte H. Hankel in seiner Theorie der complexen Zahlsysteme (Leipzig, 1867) steht, ist
schwer zu sagen, da bei ihm entgegengesetzte Aussprüche vorkommen. Wahrscheinlich hat er Zeichen und Bezeich-
netes nicht genau unterschieden.

²³ Ueberhaupt dürfen wir die Festsetzungen über die Urzeichen im 1. Bande nicht als Definitionen ansehen. Nur
das logisch Zusammengesetzte lässt sich definiren; auf das Einfache kann man nur hinweisen.

²⁴ Ebenso werden sich die wenigsten Mathematiker besinnen, den Umstand, dass \(f(\xi) \) für dasselbe Argument
immer denselben Werth hat wie die Function \(g(\xi) \), auszudrücken durch \(f = g \). Der hierin allerdings enthaltene
Fehler entspringt aus einer mangelhaften Auffassung des Wesens der Function. Ein isolirter Functionsbuchstabe
ohne Argumentstelle ist ja ein Unding, ebenso wie ein isolirtes Functionszeichen wie \(\sin \) ein Unding ist. Denn
das Kennzeichnende der Function im Vergleich mit dem Gegenstande ist ja eben die Ungesättigtheit, dass sie der
Ergänzung durch ein Argument bedarf, und dies muss auch in der Bezeichnung hervortreten. Die Unzulässigkeit
Wenn die Logiker längst vom Umfange eines Begriffes gesprochen haben und die Mathematiker von Menge, Klasse, Vielheit, so liegt auch dem eine solche Umsetzung zu Grunde; denn man kann wohl annehmen, dass das, was die Mathematiker Menge u. s. w. nennen, nichts anderes ist als Begriffsumfang, wenn sie sich dessen auch nicht immer klar bewusst sind.

e) Weierstrasss Lehre.

§ 149. Zuerst ist anerkennend hervorzuheben, dass Weierstrass den Grund tiefer legen einer solchen Bezeichnung wie \(f = g \). geht daraus hervor, dass sie in besonder Fällen sofort versagt Setzen wir für \(f(\xi) \) z. B. \(\xi^2 - 1 \) und für \(g(\xi) \) z. B. \((\xi - 1) \cdot (\xi + 1) \), so fällt in die Augen, dass man nichts der Gleichung \(f = g \) entsprechendes hinschreiben kann. Wenn aber die Bezeichnungsweise in Ordnung ist, muss es immer möglich sein, einen solchen Uebergang vom Allgemeinen zum Besondern in den Zeichen zu vollziehen. Wenn demnach die Bezeichnung \(f = g \) auch nicht als richtig anerkannt werden kann, so zeigt sie doch, dass die Mathematiker von der Möglichkeit unserer Umsetzung schon Gebrauch gemacht haben.

will, als die meisten Mathematiker. Er beginnt wie wir mit den Anzahlen. Aber gleich müssen wir uns wundern, dass er nichts von dem der Beachtung werth gefunden hat, was Andere vor ihm über diese Sache gedacht haben, dass er keine der Klippen gesehen hat, die hier drohen.

Wenn wir die angeführten Schriften vergleichen, können wir kaum im Zweifel darüber sein, dass Weierstrass auf dem kindlichen Pfeffernussstandpunkte stand, oder wenigstens zu stehen meinte; denn dass er durch die Natur der Sache immer wieder davon abgedrängt werden musste, ist vorauszusehen. Auf die Frage nach dem Wesen der Anzahl erhalten wir Antworten, wie „Reihe gleichartiger Dinge“, „Gegenstand, bestehend aus Elementen gleicher Art“; kurz: ein Haufe von Pfeffernüssen ist nach Weierstrass eine Zahl. Wenn man einen Mann, der nie über die Sache nachgedacht hätte, mit der Frage „was ist die Zahl?“ aus dem Schlafe weckte, so brächte er in der ersten Verwirrung wohl ähnliche Ausdrücke hervor wie Weierstrass: „Menge“, „Haufe“, „Reihe von Dingen“, „Gegenstand, bestehend aus gleichartigen Theilen“ u. s. w.; und ob er dabei das Wort „gleichartig“ hinzufügte oder wegließ, wäre un wesentlich, weil dadurch ja doch nichts näher bestimmt würde.

§ 150. Die beiden möglichen Hauptfehler sind hier begangen worden. Der erste besteht in der Verwech selung der Zahl mit ihrem Träger oder Substratum, ähnlich der Verwechselung von color oder pigmentum. Der zweite besteht darin, dass als Träger der Zahl nicht der Begriff oder Begriffsumfang, sondern das genommen wird, was mit den Worten „Aggregat“, „Reihe von Dingen“, „Gegenstand, der aus gleichartigen Theilen besteht“, bezeichnet werden soll. Der Unterschied liegt darin, dass das Aggregat aus Gegenständen besteht, die durch Beziehungen zusammengehalten werden und Theile des Aggregats genannt werden können. Mit der Vernichtung der Theile wird auch das Ganze vernichtet. Dagegen sind das, was den Bestand des Begriffes — oder seines Umfangs — ausmacht, nicht die Gegenstände, die unter ihn fallen, sondern seine Merkmale; das sind die Eigenschaften, die ein Gegenstand haben muss, um unter den Begriff zu fallen. Leere Begriffe sind möglich, leere Aggregate sind Undinge. Durch den Begriff ist bestimmt, welche Gegenstände unter ihn fallen; durch das Aggregat ist nicht bestimmt, was als seine Theile gelten sollen, z. B. bei einem Regimente, ob die einzelnen Soldaten, die Compagnien oder die Bataillone; bei einem Stuhle, ob die Atome, die Moleküle oder die künstlich gefügten Holzstücke.

Es ist vorauszusehen, dass diese Theorie gleich bei der Multiplikation scheitern muss, und dass die eigentliche Zahl, da sie das nicht ist, was | Weierstrass als Zahlengrösse erklärt, irgendwie eingeschmuggelt werden muss; und das geschieht dann auch ganz naiv durch Ausdrücke, wie „es kommt auf die Menge an“, „wie oft“, „in gleicher Anzahl“77. Es kommen Ausdrücke vor, wie „a-mal“, was ganz unsinnig ist, wenn man unter »a« eine Weierstrassische Zahlengrösse — einen Eisenbahnzug z. B. — versteht.

§ 151. Es geht überhaupt ein Zwiespalt durch die Weierstrassische Lehre, ein Kampf zwischen den ausdrücklich gegebenen Erklärungen und dem, was die Natur der Sache verlangt. Dieser Zwiespalt zeigt sich in der Auffassung und im Gebrauch des Wortes „Einheit“, des Gleichheitszeichens und des Pluszeichens. Nach den Erklärungen muss die Zahl aus Ein-

77„Zwei Zahlengrössen der neuen Art sind gleich, wenn sie so umgeformt werden können, dass beide dieselben Elemente und jedes in gleicher Anzahl enthalten.“ Biermann a. a. 0. § 4, ähnlich Kossak a. a. 0. S. 21. Also Zahlengrössen enthalten Elemente in gleicher Anzahl. Warum nicht in gleicher Zahlengrösse?

Der Werth oder die Geltung eines Aggregates oder einer Zahl wird vom Aggregate selbst unterschieden und damit offenbar die eigentliche Zahl gemeint. Das ist auch eine Weise, wie diese eingeschmuggelt wird; nirgends ist gesagt, was der Werth oder die Geltung sei. Es kommen Stellen vor, nach denen der Werth einer Zahlengrosse bei gewissen Veränderungen unverändert bleibt, in einer Weise, dass wir schliessen können, gleiche Zahlen (Zahlengrossen) haben denselben Werth. Nun fragen wir: was bedeutet denn nun eigentlich ein Zahlzeichen, wie »2« nach Weierstrass? eine Weierstrassische Zahlengrosse, z. B. das aus Erde und Mond bestehende System? oder den Werth, die Geltung eines solchen Aggregates? Im letzten Falle, wäre das Gleichheitszeichen in »1 + 1 = 2« als Identitätszeichen aufzufassen im Widerspruch mit der Weierstrassischen Erklärung.

§ 152. Auch das Pluszeichen muss verschiedene Bedeutungen haben, jenachdem es steht zwischen Zeichen Weierstrassischer Zahlengrossen (von Eisenbahnzügen, Bücherreihen), oder zwischen Zeichen von Werthen solcher Zahlengrossen. Die Erklärung passt nur auf den ersten Fall, der aber für die Arithmetik nicht in Betracht kommen kann. Nach der Erklärung müsste |

\[\delta + \mathbb{C} \quad \text{das aus Erde und Mond bestehende System oder Aggregat bezeichnen}, \]

\[\mathbb{C} + \mathbb{C} \]

wenn es überhaupt eine Bedeutung hätte, nur den Mond bezeichnen könne; und ebenso könnte dann »1 + 1« nur 1 bedeuten. Das ist offenbar für die Arithmetik unbrauchbar.

Dieser Kampf zwischen den Anforderungen der Arithmetik und der Weierstrassischen Lehre erzeugt auch das Wunder der wiederholt vorkommenden Gegenstände, das übrigens auch bei andern mathematischen Schriftstellern beobachtet werden kann. Wenn doch diese Herren erst einmal selber versuchen wollten, wiederholt vorzukommen! Hat schon jemand von ihnen ein wiederholt vorkommendes Sandkorn gesehen? Ist das nicht vielleicht nur eine ungenaue Ausdrucksweise? Doch nicht eine ganz unschuldige! Man versuche, sie durch eine genaue zu ersetzen, und man wird der Weierstrassischen Lehre eine Hauptstütze entziehen.

Sie ist als Kuh freilich noch nicht abstract genug, um für eine aus ihr bestehende Herde das Zeichen »50« passend erscheinen zu lassen. Dazu wäre noch eine grössere Abstraction erforderlich.

Nun erkennen schon die Quellen aller dieser Wirrnis in den beiden oben genannten Hauptfehlern.

Drei Auffassungen der Zahl (Anzahl) sind also bei Weierstrass zu unterscheiden:
1) die Zahl ist ein Aggregat von concreten Dingen (Pfeffernüssen, Eisenbahnwagen, Büchern);
2) die Zahl ist eine Eigenschaft (Werth, Geltung) eines solchen Aggregates;
3) die Zahl ist ein Aggregat von abstrakten Dingen oder eines einzigen wiederholt vorkommenden abstrakten Dinges.

Nun erkennen schon die Quellen aller dieser Wirrnis in den beiden oben genannten Hauptfehlern.

Drei Auffassungen der Zahl (Anzahl) sind also bei Weierstrass zu unterscheiden:
1) die Zahl ist ein Aggregat von concreten Dingen (Pfeffernüssen, Eisenbahnwagen, Büchern);
2) die Zahl ist eine Eigenschaft (Werth, Geltung) eines solchen Aggregates;
3) die Zahl ist ein Aggregat von abstrakten Dingen oder eines einzigen wiederholt vorkommenden abstrakten Dinges.

Nun erkennen schon die Quellen aller dieser Wirrnis in den beiden oben genannten Hauptfehlern.

Drei Auffassungen der Zahl (Anzahl) sind also bei Weierstrass zu unterscheiden:
1) die Zahl ist ein Aggregat von concreten Dingen (Pfeffernüssen, Eisenbahnwagen, Büchern);
2) die Zahl ist eine Eigenschaft (Werth, Geltung) eines solchen Aggregates;
3) die Zahl ist ein Aggregat von abstrakten Dingen oder eines einzigen wiederholt vorkommenden abstrakten Dinges.

Die Schüler Weierstrassens sind in der angenehmen Lage, unter diesen drei Standpunkten jedesmal den wählen zu können, der den Anforderungen des Augenblicks am besten zu genügen scheint. Wenn der zweite allein vorkäme, wäre die Verwechslung der Anzahl mit ihrem Träger vermieden; aber gerade diese Auffassung ist am wenigsten deutlich ausgesprochen, und die hierher gehörenden Aeusserungen sind offenbar nur durch den Zwang der Sachlage abgenöthigt.

Es ist von Umformungen einer Zahlengrösse die Rede, bei denen entweder mehrere Elemente durch ein einziges ersetzt werden oder umgekehrt ein Element durch mehrere vertreten werden können; aber nirgend ist gesagt, woran man die Möglichkeit einer solchen Ersetzung erkenne, noch in welcher Hinsicht die Vertretung geschehen könne. Es wird auch wohl gesagt, dass ein Element äquivalent sei mehreren andern; aber woran die Aequivalenz erkannt werde, bleibt dunkel.

78 Die von dieser zu gewinnende Milch wird an Abstrachheit nichts zu wünschen übrig lassen. Mann vergleiche hierzu des Verfassers Grundlagen der Arithmetik (Breslau, Koeber, 1884) und Die Zahlen des Herrn Schubert (Jena, Pohle, 1899).
79 A. a. O., S. 17.
Gegenständen. In den Vorlesungen hat Weierstrass zwar Beispiele gegeben (eingenommenes und ausgegebenes Geld, Strecken), aber, wie es scheint, nur zur Erläuterung, nicht zur Begründung.

Eine eingehendere Kritik von Weierstrassens Begründung der irrationalen Zahlen ist, nachdem die Grundlagen als ganz unsicher nachgewiesen sind, nicht notwendig.

§ 156. Werfen wir nun einen zusammenfassenden Rückblick auf die Versuche, die höheren Zahlen einzuführen, und fragen wir, welchen Nutzen wir daraus für unsere eigenen Bemühungen ziehen können.

Für uns kann nur eine inhaltliche Arithmetik in Betracht kommen. Aber auch die auf diesem Boden angestellten Versuche sind, wie wir gesehen haben, erfolglos geblieben, wenigstens sofern sie rein arithmetisch sein wollen.

L. Kronecker scheint gleich uns die bisher gemachten Versuche, das Irrationale arithmetisch zu begründen für fehlerhaft gehalten zu haben; ihm sind die irrationalen algebraischen Grössen der eigentlichen Arithmetik fremd: er will sie demgemäß ausscheiden und von den Zahlen nur die positiven ganzen als Gegenstände der Arithmetik anerkennen. Jeder Versuch, die Lehre von den reellen Zahlen rein arithmetisch zu begründen, wird wohl darauf hinauslaufen, Alles schliesslich auf die Anzahlen zurückzuführen, sodass jeder arithmetische Satz der Lehre von den
§ 157. Doch ist diese Betrachtung der vergeblichen Versuche nicht ganz unfruchtbar geblieben. Wir haben uns an unsere Umwandlung der Allgemeinheit einer Gleichheit in eine Werthverlaußgleichheit erinnert, die uns das zu leisten verspricht, was die schöpferischen Definitionen anderer Mathematiker nicht vermögen. Wir haben die reelle Zahl als Grössenverhältnis aufgefasst und so die formale Arithmetik im oben angegebenen Sinne ausgeschlossen. Damit haben wir auf die Grössen hingewiesen als auf die Gegenstände, zwischen denen ein solches Verhältnis stattfindet.\footnote{Hier befinden wir uns in Ubereinstimmung mit Newton.}

Da die Anzahlen nicht Verhältnisse sind, müssen wir sie von den positiven ganzen Zahlen unterscheiden. Darum ist es nicht möglich, das Gebiet der Anzahlen zu dem der reellen Zahlen zu erweitern; es sind eben ganz getrennte Gebiete. Die Anzahlen antworten auf die Frage: „wieviele Gegenstände einer gewissen Art gibt es?“ während die reellen Zahlen als Massenrollen betrachtet werden können, die angeben, wie gross eine Grösse verglichen mit einer Einheitsgrösse ist. Manche Leser haben sich möglicherweise für die Umformel \(\alpha + 1 = b \) erwartet; aber die \(m^* \)-Beziehung einer Anzahl zur nächstfolgenden ist verschieden von der Beziehung \(\xi + 1 = \zeta \). Jene findet nur bei Anzahlen statt, diese auch bei andern als positiven ganzen Zahlen, sodass wir durch ihre Umkehrung geleitet von den positiven ganzen Zahlen über die Null zurück zu den negativen gelangen können, während ein Rückgang über die Anzahl \(a \) hinaus nicht möglich ist. Deshalb unterscheiden wir auch die Anzahlen \(a(n) \) und \(a(n) + 1 \) von den Zahlen 0 und 1.

§ 158. Zunächst könnte es nun scheinen, dass wir uns auf die Geometrie stützen müssten; aber indem wir die reelle Zahl als Grössenverhältnis gefasst, haben wir die Meinung abgelehnt, dass die reelle Zahl etwa eine Strecke sei, dass ein Zahlzeichen eine Strecke bedeutet. Man unterscheidet nicht immer genau zwischen einer Strecke und der Maasszahl, die ihr im Verhältnisse zu einer Einheitsstrecke zukommt. So spricht man wohl von der Strecke \(\alpha \) und versteht dann im weiteren Verlaufe unter \(\alpha + 1 \) die Maasszahl. Die so entstandene Verwirrung hat dann wohl die Meinung aufkommen lassen, ein Zahlzeichen bedeute oder könne wenigstens bedeuten — eine Strecke. Gewiss bedeutet es etwas, aber nichts Geometrisches. Sondern genau dasselbe Grössenverhältnis, das bei Strecken stattfindet, haben wir auch bei Zeiträumen, Massen, Lichtstärken u. s. w. Dadurch löst sich die reelle Zahl von diesen besonders Grössenarten ab und schwebt gleichsam über ihnen. Und darum scheint es nicht angemessen, die Betrachtung zu fest an geometrischen Gebilden haften zu lassen. Man kann solche wohl benutzen, um das Verständniss zu erleichtern, muss sich aber hüten, etwas Anzählungen zugerechnet werden kann. In demselben Sinne kann man wohl auch jeden Satz der Lehre von den algebraischen Flächen und Curven, der Lehre von den Punkten, Geraden und Ebenen zuweisen. Aber es ist ein Unterschied, ob man den Ausdruck „Curve viertor Ordnung“ nur für entbehrlich hält, oder ob man ihn aus der Geometrie ganz verbannen will, weil der damit bezeichnete Begriff nicht in die Geometrie gehören. Und Kronecker scheint die Irrationalzahlen nicht nur für entbehrlich, sondern für geradezu unarithmetisch zu halten, sodass die mit ihnen geführten Beweise sich auf etwas stützen, was die Reinheit der Arithmetik trübt. Wir können den Grundsatz wohl billigen, dass die Arithmetik, wenn irgend möglich, ohne Beweisgründe Gebrauch machen dürfe, die der Geometrie oder sonst einer fremden Wissenschaft entlehnt sind. Aber es fragt sich, ob es nicht doch noch gelingen könne, die irrationalen Zahlen rein arithmetisch zu definiren; und wir werden einen solchen Weg zu eröffnen versuchen.

\footnote{Wir haben das Pluszeichen an so früher Stelle überhaupt nicht einführen können, ohne es unvollständig und stückweise zu erklären und so gegen unsern ersten Grundsatz des Definirens zu verstoßen.}
darauf zu gründen. Denn wenn arithmetische Sätze unabhängig von geometrischen Axiomen bewiesen werden können, so müssen sie es auch. Sonst verlängnete man ohne Noth die Selbständigkeit der Arithmetik und ihre logische Natur.

Man kann diese Behandlung der Arithmetik vielleicht auch formal nennen, gebraucht dann aber dieses Wort nicht in dem oben dargelegten Sinne. Dann kennzeichnet es die rein logische Natur der Arithmetik, will aber nicht besagen, dass die Zahlzeichen inhalslose Figuren seien, die nach willkürlichen Regeln behandelt werden. Die Regeln folgen hier vielmehr notwendig aus den Bedeutungen der Zeichen und diese Bedeutungen sind die eigentlichen Gegenstände der Arithmetik; willkürlich ist nur die Bezeichnung.

So können wir hoffen, uns einerseits die Handhaben der Anwendung in besonderen Wissensgebieten nicht entschlüpfen zu lassen, ohne anderseits die Arithmetik mit den aus jenen Wissenschaften entlehnten Gegenständen, Begriffen und Beziehungen zu verunreinigen und ihr eigentümliches Wesen und ihre Selbständigkeit zu gefährden. Die Darbietung solcher Handhaben kann man doch wohl von der Arithmetik erwarten, wenn auch die Anwendung selbst nicht ihre Sache ist.

Ob unser Plan ausführbar sei, muss der Versuch lehren. Dabei kann dieses Bedenken aufstossen. Wenn die positive Quadratwurzel aus 2 ein Grössenverhältnis ist, so scheint es, um sie zu definiren, notwendig, Grössen anzugeben, die dies Verhältnis zueinander haben. Aber woher diese nehmen, wenn der Hinweis auf geometrische und physikalische Grössen verboten ist? Und doch bedürfen wir eines solchen Grössenverhältnisses durchaus, weil sonst nicht einmal das Zeichen \(\sqrt{2}\) gebraucht werden dürfte.

Bevor wir dieses Bedenken zu beseitigen versuchen, müssen wir uns über die Bedeutung des Wortes „Grösse“ verständigen.

g) \textbf{Grösse}.

„gleichartig“ ist offenbar gar nichts gesagt; denn in einer Hinsicht können Dinge gleichartig sein, die in einer andern ungleichartig sind. Die Frage also, ob ein Gegenstand einem andern gleichartig sei, lässt sich nicht mit „ja“ oder „nein“ beantworten; es fehlt an dem ersten logischen Erfordernis, der scharfen Begrenzung.

Wenn H. Hankel sagt

85 „Unter der Summe zweier Grössen a und b versteht man eine neue Größe, die aus ihrer Synthesis als Resultat hervorgeht“

so gebraucht er das ebenso unerklärte Wort „Synthesis“, und es bleibt zweifelhaft, ob es bei zwei gegebenen Objecten nicht verschiedene Synthesen geben könne.

Wenn man Wörter in einem besondern Zusammenhange erklärt hat, darf man sich nicht einbilden, nun auch in andern Zusammenhängen einen Sinn mit ihnen zu verbinden. Man dreht sich, wie es scheint, hier nur im Kreise, indem man immer ein Wort durch ein anderes ebenso erklärungsbedürftiges erklärt, ohne dadurch dem Kerne der Sache näher zu kommen.

85 Theorie der komplexen Zahlensysteme (Leipzig, Voss, 1867) § 14.

§ 162. Da es uns zunächst nur darum zu thun ist, eine Grundlage für die Lehre von den reellen Zahlen zu gewinnen, wollen wir uns die Sache dadurch erleichtern, dass wir die absoluten Grössen ausser Betracht lassen und nur diejenigen Grössengebiete ins Auge fassen, in denen ein Gegensatz stattfindet, dem bei den Maasszahlen der des Positiven und Negativen entspricht. Und hierbei mag uns die Bemerkung von Gauss (Werke, Bd. II, S. 176) zu Hülfe kommen:

„Positive und negative Zahlen können nur da eine Anwendung finden, wo das Gezählte ein Entgegengesetztes hat, was mit ihm vereinigt gedacht der Vernichtung gleich zu stellen ist. Genau besehen findet diese Voraussetzung nur da statt, wo Substanzen (für sich denkbare Gegenstände), sondern Relationen zwischen je zwei Gegenständen das Gezählte sind. Postulirt wird dabei, dass diese Gegenstände auf bestimmte Art in eine Reihe geordnet sind, z. B. A, B, C . . . und dass die Relation des A zu B als der Relation des B zu C u. s. w. gleich betrachtet werden kann. Hier gehört nun zu dem Begriff der Entgegensezung nichts weiter als der Umtausch der Glieder der Relation, sodass wenn die Relation (oder der Uebergang) von A zu B als +1 gilt, die Relation von B zu A als −1 dargestellt werden muss. Insofern also eine solche Reihe auf beiden Seiten unbegrenzt ist, repräsentirt jede reelle Zahl die Relation eines beliebig als Anfang gewählten Gliedes zu einem bestimmten Gliede der Reihe."

Im Wesentlichen können wir diesen Gedanken zustimmen, lassen jedoch die Beschränkung auf ganze Zahlen fallen und sagen statt „das Gezählte“ lieber „das Gemessene“. Gauss scheint die Relationen durch die Gegenstände bestimmt zu denken, zwischen denen sie stattfinden, und bedarf eines Postulates über die Gleichheit der Relationen. Wir dagegen betrachten die Beziehung als definirbar ohne Hinsicht auf bestimmte Gegenstände, die in ihr stehen, sodass mit der Anerkennung einer Beziehung im Allgemeinen noch gar nicht gesagt ist, dass es Gegenstände gebe, die in ihr stehen. Wenn nun eine Beziehung gegeben ist, in der A zu B steht, so ist damit zugleich entschieden, ob B zu C und C zu D in dieser selben Beziehung stehen, und eine Anordnung von Gegenständen in eine Reihe ist damit von selbst gegeben. Freilich wird nicht jede Beziehung eine in’s Unendliche fortlaufende Reihe ergeben; nicht jede Beziehung ist also für unsere Zwecke brauchbar. Welche Beschränkungen nothwendig sind, muss die weitere Untersuchung lehren.

§ 163. Nehmen wir beispielsweise als Gegenstände die Punkte auf einer geraden Linie. Zwischen diesen finden Abstandsbeziehungen statt. Der Punkt B ist etwa von A um eine gewisse Strecke nach einer gewissen Seite (etwa nach rechts) entfernt. Wenn der Punkt D ebenso weit von C nach derselben Seite entfernt ist, so steht C zu D in derselben Abstands-

§ 164. Wir können jetzt der vorhin (§ 159) aufgeworfenen Frage näher treten, woher wir die Größen nehmen, deren Verhältnisse irrationale Zahlen sind. Sie werden Relationen sein; und diese dürfen nicht leer sein, d. h., sie dürfen nicht Umfänge solcher Beziehungen sein, in denen keine Gegenstände zu einander stehen. Denn solche Beziehungen haben denselben Umfang; es gibt nur eine einzige leere Relation. Damit könnten wir keine reelle Zahl definieren. Wenn q die leere Relation ist, so ist q^{-1} dieselbe, ebenso auch $q^{-1} \circ q$. Auch die Zusammensetzung der Relationen unseres Grössengebietes darf nicht die leere Relation ergeben; das thäte sie aber, wenn es keinen Gegenstand gäbe, zu dem ein Gegenstand in der ersten und der zu einem Gegenstand in der zweiten Relation stünde.

Wir bedürfen also einer Klasse von Gegenständen, die in den Relationen unseres Grössengebietes zu einander stehen, und zwar muss diese Klasse unendlich viele Gegenstände umfassen. Nun kommt ja dem Begriffe endliche Anzahl eine unendliche Anzahl zu, die wir Endlos genannt haben; aber diese Unendlichkeit genügt noch nicht. Nennen wir den Umfang eines Begriffes, der dem Begriffe endliche Anzahl untergeordnet ist, eine Klasse endlicher Anzahlen, so kommt dem Begriffe Klasse endlicher Anzahlen eine unendliche Anzahl zu, die größer als Endlos ist; d. h. es lässt sich der Begriff endliche Anzahl abbilden in dem Begriff Klasse endlicher Anzahlen, aber nicht umgekehrt dieser in jenen.

Nun wären etwa zwischen den Klassen endlicher Anzahlen Relationen nachzuweisen, welche als Angehörige eines Grössengebietes aufgefasst werden könnten. Etwas, anders wird sich die Sache freilich noch gestalten, wie wir gleich sehen werden.

Setzen wir für den Augenblick die Kenntnis der irrationalen Zahlen voraus! Jede positive Zahl a kann in der Form

$$ r + \sum_{k=1}^{\infty} \frac{1}{2^n_k} $$

bezeichnet werden, worin unter r eine positive ganze Zahl oder 0, unter $n_1, n_2, u.$ s. w. positive ganze Zahlen zu verstehen sind, deren Anzahl wir als unendlich annehmen können. Es gehört in dieser Weise zu jeder positiven rationalen oder irrationalen Zahl a ein Paar, dessen erstes Glied (r) eine positive ganze Zahl oder 0 ist und dessen zweites Glied eine Klasse von positiven ganzen Zahlen ist (Klasse der n_k). Statt der ganzen Zahlen können wir auch Anzahlen nehmen, sodass nun zu jeder positiven reellen Zahl ein Paar gehört, dessen erstes Glied eine Anzahl und dessen zweites Glied eine Klasse von Anzahlen ist, die anz (0) nicht enthält. Sind nun a, b und c positive Zahlen und ist $a + b = c$, so besteht für jedes b eine Beziehung zwischen den Paaren, die zu a und zu c gehören. Und diese Beziehung kann man definiren, ohne auf die reellen Zahlen a, b, c zurückzugehen, also ohne die Kenntnis der reellen Zahlen vorauszusetzen. So haben wir Beziehungen, deren jede wieder durch ein Paar (das zu b gehörende) gekennzeichnet ist. Hierzu kommen noch die Umfänge dieser Beziehungen (diese Relationen) entsprechen den positiven und negativen reellen Zahlen eindeutig. Der Addition der Zahlen b und b' entspricht die Zusammensetzung der zugehörigen Relationen. Die Klasse dieser Relationen ist nun ein Gebiet, das für unser Plan hinreicht. Diese Andeutungen mögen vorläufig genügen, die Zweifel | an der Durchführbarkeit des Planes zu zerstreuen. Es soll damit nicht gesagt sein, dass wir uns genau an diesen Weg halten werden. Auf zwei Punkte möchte ich nur noch besonders hinweisen. Erstens: weder die Klassen endlicher Anzahlen, noch die erwähnten Paare, noch die

Zunächst aber werden wir die Frage beantworten müssen: Welche Eigenschaften muss eine Klasse von Relationen haben, um ein Grössengebiet zu sein?

2. Grössenlehre.

A. Sätze über die Zusammensetzung von Relationen im Allgemeinen.

§ 165. Zerlegung.

Die Abgrenzung des Grössengebietes ergiebt sich aus der Forderung, dass die für die Addition wesentlichen Gesetze gelten, die unter den Namen des commutativen und des assoziativen Princips bekannt sind. Die Frage ist nun so zu stellen: welche Eigenschaften muss eine Klasse von Relationen haben, damit in ihr für die Zusammensetzung der Relationen das commutative und das associative Gesetz gelten? Was dieses anbetrifft, so zeigt sich, dass es allgemein gilt, also keine nähere Bestimmung bewirkt. Um es zu beweisen, brauchen wir einige Sätze über die Gleichheit von Relationen, die wir vorweg ableiten. Dabei sei Folgendes bemerkt. Die Bedingung, dass p eine Relation sei, können wir durch das Vorderglied

\[\text{ext } \alpha \text{ ext } \varepsilon (\rightarrow f (\varepsilon, \alpha)) = p \]

oder auch durch das Vorderglied

\[\text{ext } \alpha \text{ ext } \varepsilon (\varepsilon (\alpha \varnothing p)) = p \]

wiedergeben.

§ 166. Aufbau.

\[\exists a \forall d \left[\neg \varnothing (\alpha \varnothing p) = \neg (\alpha \varnothing q) \right] \rightarrow \neg (\alpha \varnothing p) = \neg (\alpha \varnothing q) \]

\((\alpha) \) :

\[\neg (\alpha \varnothing p) = \neg (\alpha \varnothing q) \]

\[(\alpha) \] :

\[\text{ext } \alpha \text{ ext } \varepsilon (\rightarrow f (\varepsilon, \alpha)) = p \]

oder auch durch das Unterglied

\[\text{ext } \alpha \text{ ext } \varepsilon (\varepsilon (\alpha \varnothing p)) = p \]

\[\text{Textkorrektur infolge modernisierter Formelnotation!} \]

\[\text{Textkorrektur infolge modernisierter Formelnotation!} \]
⊢ ext α ext ε (− f(ε, α)) = p →
(∀a ∀d (− d ◦ (a ◦ q))) →
(− f(d, a)) = (− d ◦ (a ◦ q))

(6) : ⊢ ext α ext ε (− g(ε, α)) = q → (ext α ext ε (− f(ε, α)) = p →
(∀a ∀d (− d ◦ (a ◦ p))) = (− d ◦ (a ◦ q))) →
(− f(d, a)) = (− g(d, a)))

(γ)

(IIIc) : ⊢ ext α ext ε (− g(ε, α)) = q → (ext α ext ε (− f(ε, α)) = p →
(∀a ∀d (− d ◦ (a ◦ p))) = (− d ◦ (a ◦ q))) →
ext α ext ε (− f(ε, α)) = ext α ext ε (− g(ε, α)))

(ε)

(IIIc) : ⊢ ext α ext ε (− g(ε, α)) = q → (ext α ext ε (− f(ε, α)) = p →
(∀a ∀d (− d ◦ (a ◦ p))) = (− d ◦ (a ◦ q))) →
p = ext α ext ε (− g(ε, α)))

(ζ)

B ⊢ ext α ext ε (¬ ∀t [r ◦ (α ◦ r) → ¬ ε ◦ (r ◦ p)]) = r ◦ p

(485) : ⊢ ext α ext ε (− g(ε, α)) = q →
(∀a ∀d (− d ◦ (a ◦ r ◦ p))) = (− d ◦ (a ◦ q))) → r ◦ p = q

(486)

B ⊢ ext α ext ε (¬ ∀t [r ◦ (α ◦ t) → ¬ ε ◦ (t ◦ s)]) = t ◦ s

(486) : ⊢ ∀a ∀d (− d ◦ (a ◦ r ◦ p))) = (− d ◦ (a ◦ (t ◦ s))) →
r ◦ p = t ◦ s

(487)

5 ⊢ ε ◦ (r ◦ q) → (r ◦ (α ◦ t) → ε ◦ (a ◦ (t ◦ q)))

(5) : − − − − − − − −
\[\vdash d \circ (e \circ p) \rightarrow (e \circ (r \circ q) \rightarrow \]
\[(r \circ (a \circ t) \rightarrow d \circ (a \circ ((t \circ q) \circ p))) \]
(\alpha)

\[\times \]

\[\vdash \neg d \circ (a \circ ((t \circ q) \circ p)) \rightarrow (r \circ (a \circ t) \rightarrow \]
\[(e \circ (r \circ q) \rightarrow \neg d \circ (e \circ p))) \]
(\beta)

\[\sim \]

\[\vdash \neg d \circ (a \circ ((t \circ q) \circ p)) \rightarrow (r \circ (a \circ t) \rightarrow \]
\[\forall r \circ (r \circ q) \rightarrow \neg d \circ (r \circ p)) \]
(\gamma)

(15) : \underline{--- --- --- --- --- --- ---}

\[S.165 \]

\[\vdash \neg d \circ (a \circ ((t \circ q) \circ p)) \rightarrow (r \circ (a \circ t) \rightarrow \neg d \circ (r \circ (q \circ p))) \]
(\delta)

\[\sim \]

\[\vdash \neg d \circ (a \circ ((t \circ q) \circ p)) \rightarrow \forall r \circ (a \circ t) \rightarrow \neg d \circ (r \circ (q \circ p)) \]
(\varepsilon)

(15) : \underline{--- --- --- --- --- --- --- ---}

\[\vdash \neg d \circ (a \circ ((t \circ q) \circ p)) \rightarrow \neg d \circ (a \circ (t \circ q \circ p)) \]
(\zeta)

\[\times \]

\[\vdash d \circ (a \circ (t \circ q \circ p)) \rightarrow d \circ (a \circ ((t \circ q) \circ p)) \]
(488)

5 \[\vdash d \circ (e \circ p) \rightarrow (e \circ (r \circ q) \rightarrow d \circ (r \circ (q \circ p))) \]

(5) : \underline{--- --- --- --- --- --- --- --- ---}

\[\vdash d \circ (e \circ p) \rightarrow (e \circ (r \circ q) \rightarrow \]
\[(r \circ (a \circ t) \rightarrow d \circ (a \circ ((t \circ q) \circ p))) \]
(\alpha)

\[\times \]

\[\vdash d \circ (e \circ p) \rightarrow (\neg d \circ (a \circ (t \circ q \circ p)) \rightarrow \]
\[(r \circ (a \circ t) \rightarrow \neg e \circ (r \circ q))) \]
(\beta)

\[\sim \]
\[\vdash d \varnothing (e \varnothing p) \rightarrow (\neg d \varnothing (a \varnothing (t \circ q \circ p))) \rightarrow \\
\forall \tau [\tau \varnothing (a \varnothing t) \rightarrow \neg e \varnothing (\tau \varnothing q)] \]

(\gamma)

(15) :

\[\vdash d \varnothing (e \varnothing p) \rightarrow (\neg d \varnothing (a \varnothing (t \circ q \circ p))) \rightarrow \neg e \varnothing (a \varnothing (t \circ q)) \]

(\delta)

\[\times \]

\[\vdash \neg d \varnothing (a \varnothing (t \circ q \circ p)) \rightarrow (e \varnothing (a \varnothing (t \circ q))) \rightarrow \neg d \varnothing (e \varnothing p) \]

(\epsilon)

\[\neg \vdash d \varnothing (a \varnothing (t \circ q \circ p)) \rightarrow \forall \tau [\tau \varnothing (a \varnothing (t \circ q)) \rightarrow \neg d \varnothing (\tau \varnothing p)] \]

(\zeta)

(15) :

\[\vdash \neg d \varnothing (a \varnothing (t \circ q \circ p)) \rightarrow \neg d \varnothing (a \varnothing ((t \circ q) \circ p)) \]

(\eta)

\[\times \]

\[\vdash d \varnothing (a \varnothing ((t \circ q) \circ p)) \rightarrow d \varnothing (a \varnothing (t \circ q \circ p)) \]

(\theta)

(IVa) :

\[\vdash (d \varnothing (a \varnothing (t \circ q \circ p)) \rightarrow d \varnothing (a \varnothing ((t \circ q) \circ p))) \rightarrow \\
[\neg d \varnothing (a \varnothing ((t \circ q) \circ p))] \equiv [\neg d \varnothing (a \varnothing (t \circ q \circ p))] \]

(\iota)

(488) :

\[\vdash [\neg d \varnothing (a \varnothing ((t \circ q) \circ p))] \equiv [\neg d \varnothing (a \varnothing (t \circ q \circ p))] \]

(\kappa)

\[\neg \vdash \forall \alpha \forall \theta [\neg \varnothing \sigma (a \varnothing ((t \circ q) \circ p))] \equiv [\neg \varnothing \sigma (a \varnothing (t \circ q \circ p))] \]

(\lambda)

(487) :

\[\vdash (t \circ q) \circ p = t \circ q \circ p \]

(489)

(IIIa) :

\[\vdash F(t \circ q \circ p) \rightarrow F((t \circ q) \circ p) \]

(490)

489 \[\vdash (t \circ q) \circ p = t \circ q \circ p \]

(IIIc) :

\[\vdash F((t \circ q) \circ p) \rightarrow F(t \circ q \circ p) \]

(491)
§ 167. Zerlegung.

In dem eben bewiesenen Satze haben wir das associative Gesetz für die Zusammensetzung der Relationen. Das commutative Gesetz gilt hier nicht ohne Einschränkung. Wir beweisen es zunächst für Glieder einer Reihe wie

\[K, K \circ K, \ (K \circ K) \circ K, \ ((K \circ K) \circ K) \circ K \ldots \]

Es wird wünschenswerth, für die reihende Relation in einer solchen Reihe eine kurze Bezeichnung zu haben. Wir definiren deshalb:

\[*t := \text{ext } \alpha \text{ ext } \varepsilon \ (\varepsilon \circ t = \alpha) \]

und ziehen hieraus die nächsten Folgerungen.

§ 168. Aufbau.

\[\Phi \vdash \text{ext } \alpha \text{ ext } \varepsilon \ (\varepsilon \circ t = \alpha) = *t \]

(6) :

\[\vdash F(d \circ (a \varnothing t)) \to F(d \circ t = a) \]

(492) :

\[\vdash d \circ (a \varnothing t) \to d \circ t = a \]

(IIIc) :

\[\vdash d \circ (a \varnothing t) \to (F(d \circ t) \to F(a)) \]

(493) :

\[\vdash d \circ (a \varnothing t) \to (F(a) \to F(d \circ t)) \]

(494) :

\[\Phi \vdash \text{ext } \alpha \text{ ext } \varepsilon \ (\varepsilon \circ t = \alpha) = *t \]

(10) :

\[\vdash F(d \circ t = a) \to F(d \circ (a \varnothing t)) \]

(495) :

\[\vdash d \circ t = d \circ t \]

(496) :

\[\vdash d \circ (d \circ t \varnothing t) \]

\[\Phi \vdash e \circ t = d \to (e \circ t = a \to d = a) \]

\[(492, 492) : \]

\[\vdash e \circ (d \varnothing t) \to (e \circ (a \varnothing t) \to d = a) \]

(\alpha) :

\[\vdash \forall \varnothing \forall \varnothing [e \circ (d \varnothing t) \to \forall a \ [e \circ (a \varnothing t) \to \varnothing = a]] \]

(\beta) :

(16) :
§ 169. Zerlegung.
Um nun den Satz
\[\vdash t \circ (q \circ \leq_{st}) \rightarrow (t \circ (p \circ \leq_{st}) \rightarrow q \circ p = p \circ q) \]
mit (144) zu beweisen, brauchen wir den Satz
\[\vdash t \circ (p \circ \leq_{st}) \rightarrow (d \circ p = p \circ d \rightarrow (d \circ (a \circ \leq_{st}) \rightarrow a \circ p = p \circ a)) \]
or den Satz
\[\vdash t \circ (p \circ \leq_{st}) \rightarrow (d \circ p = p \circ d \rightarrow (d \circ t) \circ p = p \circ d \circ t) \]
den wir mit dem Satz
\[\vdash t \circ (p \circ \leq_{st}) \rightarrow t \circ p = p \circ t \]
beenden. Dieser ist mit (144) abzuleiten.

§ 170. Aufbau.

IIIh \[\vdash t \circ d = d \circ t \rightarrow (t \circ d) \circ t = (d \circ t) \circ t \]

(491) :

\[\vdash t \circ d = d \circ t \rightarrow t \circ d \circ t = (d \circ t) \circ t \]

(493) :

\[\vdash t \circ d = d \circ t \rightarrow (d \circ (a \circ \leq_{st}) \rightarrow t \circ a = a \circ t) \]

(\beta)

\[\vdash \forall d \ [t \circ d = d \circ t \rightarrow \forall a \ [d \circ (a \circ \leq_{st}) \rightarrow t \circ a = a \circ t]] \]

(144) :

\[\vdash t \circ (p \circ \leq_{st}) \rightarrow (t \circ t = t \circ t \rightarrow t \circ p = p \circ t) \]

(\delta)

(IIIe) ::

\[\vdash t \circ (p \circ \leq_{st}) \rightarrow t \circ p = p \circ t \]

(498)

(IIIa) :

\[\vdash t \circ (p \circ \leq_{st}) \rightarrow (F(p \circ t) \rightarrow F(t \circ p)) \]

(499)
IIIh \(\vdash d \circ p = p \circ d \rightarrow (d \circ p) \circ t = (p \circ d) \circ t \)

(491) :

\[\vdash d \circ p = p \circ d \rightarrow d \circ p \circ t = (p \circ d) \circ t \] \((\alpha) \)

(491) :

\[\vdash d \circ p = p \circ d \rightarrow d \circ p \circ t = p \circ d \circ t \] \((\beta) \)

(499) :

\[\vdash t \circ (p \circ \leq \circ t) \rightarrow (d \circ p = p \circ d \rightarrow d \circ t \circ p = p \circ d \circ t) \] \((\gamma) \)

(490) :

\[\vdash t \circ (p \circ \leq \circ t) \rightarrow (d \circ p = p \circ d \rightarrow (d \circ t) \circ p = p \circ d \circ t) \] \((\delta) \)

(493) :

\[\vdash t \circ (p \circ \leq \circ t) \rightarrow (d \circ p = p \circ d \rightarrow (d \circ (a \circ \circ t) \rightarrow a \circ p = p \circ a)) \] \((\varepsilon) \)

\[\vdash t \circ (p \circ \leq \circ t) \rightarrow \forall d [d \circ p = p \circ d \rightarrow \forall a [d \circ (a \circ \circ t) \rightarrow a \circ p = p \circ a]] \] \((\zeta) \)

(144) :

\[\vdash t \circ (q \circ \leq \circ t) \rightarrow (t \circ (q \circ \leq \circ t) \rightarrow (t \circ p = p \circ t \rightarrow q \circ p = p \circ q)) \] \((\eta) \)

(498) :

\[\vdash t \circ (q \circ \leq \circ t) \rightarrow (t \circ (p \circ \leq \circ t) \rightarrow q \circ p = p \circ q) \] \((501) \)

(IIIc) :

\[\vdash t \circ (q \circ \leq \circ t) \rightarrow (t \circ (p \circ \leq \circ t) \rightarrow (f(q \circ p) \rightarrow f(p \circ q))) \] \((502) \)

Sätze, in denen die Ähnlichkeit der Umkehrung der Relationen mit der Umkehrung des Vorzeichens hervortritt.

§ 171. Zerlegung.

Wir beweisen zunächst einen Satz, der besagt, dass die doppelte Umkehrung einen Doppelpolwehverlauf — mithin auch eine Relation — ungeändert lässt. Sodann benutzen wir (24), um einige Sätze abzuleiten, die solchen arithmetischen Sätzen entsprechen, bei denen es sich
um die Auflösung einer Klammer mit davorstehendem Minuszeichen handelt.

§ 172. Aufbau.

\[(IIIa) : \quad \vdash \ext\alpha \ext\varepsilon(f(\alpha, \varepsilon)) = \ext\alpha \ext\varepsilon(f(\varepsilon, \alpha))^{-1} \]

\[(IIIb) : \quad \vdash \ext\alpha \ext\varepsilon(f(\alpha, \varepsilon))^{-1} = (\ext\alpha \ext\varepsilon(f(\varepsilon, \alpha)))^{-1} \]

\[(IIIa) : \quad \vdash \ext\alpha \ext\varepsilon(f(\alpha, \varepsilon)) = \ext\alpha \ext\varepsilon(f(\alpha, \varepsilon))^{-1} \]

\[(40) : \quad \vdash \ext\alpha \ext\varepsilon(f(\varepsilon, \alpha)) = (\ext\alpha \ext\varepsilon(f(\varepsilon, \alpha)))^{-1} \]

\[(IIIc) : \quad \vdash \ext\alpha \ext\varepsilon(f(\varepsilon, \alpha)) = q \rightarrow q = (q^{-1})^{-1} \]

\[24 \quad \vdash (q \circ p)^{-1} = p^{-1} \circ q^{-1} \]

\[(IIIc) : \quad \vdash f((q \circ p)^{-1}) \rightarrow f(p^{-1} \circ q^{-1}) \]

\[505 \quad \vdash F((q \circ p)^{-1} \circ t) \rightarrow F((p^{-1} \circ q^{-1}) \circ t) \]

\[(491) : \quad \vdash F((q \circ p)^{-1} \circ t) \rightarrow F((p^{-1} \circ q^{-1}) \circ t) \]

\[24 \quad \vdash (q \circ p)^{-1} = p^{-1} \circ q^{-1} \]

\[(IIIa) : \quad \vdash f(p^{-1} \circ q^{-1}) \rightarrow f((q \circ p)^{-1}) \]

\[507 \quad \vdash F((p^{-1} \circ q^{-1}) \circ t) \rightarrow F((q \circ p)^{-1} \circ t) \]

\[(491) : \quad \vdash F(p^{-1} \circ q^{-1} \circ t) \rightarrow F((q \circ p)^{-1} \circ t) \]

B. Die Positivklasse.

a) Definitionen der Functionen \(\delta \xi \) und \(\text{posval}(\xi) \) und Folgerungen.

§ 173. Zerlegung.

Der Satz (501) enthält das commutative Gesetz für die Zusammensetzung von Relationen, die einer Reihe wie

\[K, K \circ K, (K \circ K) \circ K \ldots \]

Dieses können wir nur als Grenze erreichen; und um die Grenze zu definiren, brauchen wir die Beziehung des Kleinern zum Grössern. Nun bietet sich hier eine solche Beziehung von selbst dar, nämlich die des Folgens in unserer Reihe. Diese nützt uns aber nichts für Relationen, die der Reihe nicht angehören. Es wird also nöthig sein, gewisse Anforderungen an eine Beziehung zu stellen, die erfüllt sein müssen, damit man sie als eine solche des Kleinern zum Grössern auffassen könne, und das Folgen in unserer Reihe muss als besonderer Fall dieser Beziehung erscheinen. Man kann eine solche Beziehung dann zur Abgrenzung des Grössengebietes verwenden, indem man sagt: alle Relationen gehören dem Grössengebiete an, die zu einer und derselben in dieser Beziehung stehen. Es ist jedoch wohl zweckmässiger, die Beziehung des Kleinern zum Grössern auf das Positive zurückzuführen. Entweder nämlich kann man das Positive erklären als das, was grösser als die Nullgrösse ist, oder man kann sagen: a wird grösser als b genannt, wenn die Relation positiv ist, die aus a und der Umkehrung von b zusammengesetzt ist. Wir können nicht von der Klasse des Positiven schlechthin mit dem bestimmten Artikel reden, da es in jedem Grössengebiete eine solche Klasse geben wird. Das Wort „Positivklasse” wird uns vielmehr ein Begriffsname sein, und wir stellen die Frage so: welche Eigenschaften muss eine Klasse haben, um als Positivklasse gelten zu können? Wenn wir nun eine Positivklasse haben, so können wir das zugehörige Grössengebiet abgrenzen. Zu ihm gehört jede Relation, die entweder der Positivklasse angehört, oder die die Umkehrung einer Relation ist, die der Positivklasse angehört, oder die zusammengesetzt ist aus einer Relation, die der Positivklasse angehört, und deren Umkehrung (Nullgrösse). Wenn demnach Σ eine Positivklasse ist, so gehört II dem zugehörigen Grössengebiete an, wenn

\[\forall q \ [q \circ \Sigma \rightarrow \neg (\neg \Pi = q^{-1} \rightarrow \Pi = q^{-1} \circ q)] \rightarrow \Pi \circ \Sigma \]

das Wahre ist. Wir gelangen hierdurch zu folgender Definition:

\[\delta s := \text{ext} (\forall q \ [q \circ s \rightarrow \neg (\neg \varepsilon = q^{-1} \rightarrow \varepsilon = q^{-1} \circ q)] \rightarrow \varepsilon \circ s) \] (X)

Wenn demnach Σ eine Positivklasse ist, so ist \(\delta \Sigma \) das zugehörige Grössengebiet und \(\Pi \circ \delta \Sigma \) ist der Wahrheitswerth davon, dass Π diesem Grössengebiete angehört. Wir lesen „\(\Pi \circ \delta \Sigma \)” einfacher: „\(\Pi \) gehört dem \(\Sigma \)-Gebiete an”. Ziehen wir zunächst die einfachsten Folgerungen aus dieser Definition!

§ 174. Aufbau.

\[\vdash \text{ext} \varepsilon (\forall q \ [q \circ s \rightarrow \neg (\neg \varepsilon = q^{-1} \rightarrow \varepsilon = q^{-1} \circ q)] \rightarrow \varepsilon \circ s) = \delta s \]

(44):

\[\vdash (\forall q \ [q = s \rightarrow \neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q)] \rightarrow p \circ s) \rightarrow p \circ \delta s \] (509)

\[(I) :: \]

\[\vdash p \circ s \rightarrow p \circ \delta s \] (510)

\[509 \vdash (\forall q \ [q = s \rightarrow \neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q)] \rightarrow p \circ s) \rightarrow p \circ \delta s \]

\[(Ia) :: \]

\[\vdash \neg \forall q \ [q \circ s \rightarrow \neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q)] \rightarrow p \circ \delta s \] (α)

\[X \]
\[\vdash p \circ s \rightarrow \forall q \left[q \circ s \rightarrow \neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q) \right] \quad (\beta)\]

(IIa) :
\[\vdash p \circ s \rightarrow (q \circ s \rightarrow \neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q)) \quad (511)\]

(Ic) :
\[\vdash p \circ s \rightarrow (q \circ s \rightarrow p = q^{-1} \circ q) \quad (\alpha)\]

\[\vdash p = q^{-1} \circ q \rightarrow (q \circ s \rightarrow p \circ s) \quad (512)\]
\[
\text{IIIe} \quad \vdash q^{-1} \circ q = q^{-1} \circ q \quad (512) :
\]
\[\vdash q \circ s \rightarrow q^{-1} \circ q \circ s \quad (513)\]

511 \[\vdash p \circ s \rightarrow (q \circ s \rightarrow \neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q))\]

(Id) :
\[\vdash p \circ s \rightarrow (q \circ s \rightarrow \neg p = q^{-1}) \quad (\alpha)\]

\[\vdash p = q^{-1} \rightarrow (q \circ s \rightarrow p \circ s) \quad (514)\]
\[
\text{IIIe} \quad \vdash q^{-1} = q^{-1} \quad (514) :
\]
\[\vdash q \circ s \rightarrow q^{-1} \circ s \quad (515)\]

X \[\vdash \text{ext} \varepsilon (\forall q [q \circ s \rightarrow \neg (\neg \varepsilon = q^{-1} \rightarrow \varepsilon = q^{-1} \circ q)] \rightarrow \varepsilon \circ s) = s \quad (46) :
\]
\[\vdash p \circ s \rightarrow (\forall q [q \circ s \rightarrow \neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q)] \rightarrow p \circ s) \quad (516)\]

\[\vdash \neg p \circ s \rightarrow (\forall q [q \circ s \rightarrow \neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q)] \rightarrow \neg p \circ s) \quad (517)\]
§ 175. Zerlegung.

Wann ist nun eine Klasse eine Positivklasse? Wenn das zugehörige Grössengebiet stetig sein soll, so muss Folgendes stattfinden. Wenn eine Größe dieses Gebietes eine Eigenschaft Φ hat, die auch allen kleineren Grössen zukommt, während es in diesem Gebiete auch eine Größe gibt, die die Eigenschaft Φ nicht hat, so muss es eine obere Grenze aller Grössen von der Eigenschaft Φ in diesem Gebiete geben; d. h. es muss hier eine Größe der Art geben, dass alle kleineren die Eigenschaft Φ haben, dass aber jede grössere grösser ist als mindestens eine Größe, die die Eigenschaft Φ nicht hat. Doch dies nur vorläufig! Wie man sieht, brauchen wir zur Definition der Grenze eine Beziehung des Kleinern zum Grösseren, die wir mit der Potitivklasse erklären wollten. Wir werden also nicht mit einem Schritte ans Ziel gelangen. Bevor wir den Begriff der Positivklasse definiren, stellen wir einen weiteren Begriff auf — wir wollen ihn Positivalklasse nennen — mit dem wir die obere Grenze definiren können. Mit dieser gelangen wir dann zur Positivklasse.

Die Bestimmungen, auf die es uns zunächst ankommt, sind folgende:

Was zu einer Positivalklasse gehört, muss eine Relation sein, die selbst sowie auch ihre Umkehrung eindeutig ist. Die aus einer solchen Relation und ihrer Umkehrung zusammengesetzte Relation darf als Nullgröße der Positivalklasse nicht angehören. Wenn ferner zwei Relationen derselben Positivalklasse angehören, so muss auch die aus ihnen zusammengesetzte Relation (als Summe jener) dieser Positivalklasse angehören, und die aus der einen und der Umkehr der andern zusammengesetzte Relation muss (als Differenz) dem Grössengebiete der Positivalklasse angehören. Dasselbe muss auch von der aus der Umkehrung der einen und aus der andern zusammengesetzten Relation gelten. Wenn Γ zu irgendeinem Gegenstande in der Relation Π steht, so wollen wir sagen, Γ trete als erstes Glied der Relation Π auf; und wenn irgendein Gegenstand zu Δ in der Relation Π steht, so sagen wir, Δ trete als zweites Glied der Relation Π auf. Zu jeder Relation gibt es eine erste Klasse von Gegenständen, die als erste Glieder der Relation auftreten können und eine zweite Klasse von Gegenständen, die als zweite Glieder der Relation auftreten können. Wir verlangen nun, dass die erste zu einer Relation Π gehörende Klasse zusammenfalle mit der zweiten zu einer Relation K gehörenden Klasse, wenn Π und K derselben Positivalklasse angehören. Damit ist auch gesagt, dass die erste zu Π gehörende Klasse mit der zweiten zusammenfalle. Es giebt dann also zu jeder Positivalklasse Σ eine einzige Klasse von Gegenständen, die sowohl als erste, wie auch als zweite Glieder jeder Relation auftreten können, die zu Σ gehört.

Dies führt uns zu folgender Definition

\[
\text{posval}(s) := \\
(\forall p \ [p \circ s \rightarrow \\
\neg (\forall q \ [q \circ s \rightarrow \neg (\forall a \ [\neg a \circ (a \circ q)]) = (\forall a \ [\neg a \circ (a \circ q)])] \\
(q \circ p^{-1} \circ s \rightarrow (q^{-1} \circ p \circ s \rightarrow q \circ p \circ s)])) \\
(\text{ext } \alpha \text{ ext } \varepsilon (\neg \varepsilon \circ (\alpha \circ p)) = p \rightarrow (\text{funk } (p^{-1}) \rightarrow (\text{funk } (p) \rightarrow p^{-1} \circ p \circ s)))) (\Psi)
\]

Danach ist posval(Σ) der Wahrheitswerth davon, dass Σ eine Positivalklasse ist. Bei der Aufstellung dieser Definition habe ich mich bemüht, nur die nothwendigen Bestimmungen aufzunehmen und nur solche, die von einander unabhängig sind. Dass dies gelungen sei, kann freilich nicht bewiesen werden, wird aber wahrscheinlich, wenn mehrfach Versuche misslingen, einige dieser Bestimmungen auf andere zurückzuführen. Insbesondere scheint es nicht möglich zu sein, die Zeile $.q \circ \delta s \circ p^{-1}$ zu entbehren. Sollte ein solcher Versuch später doch gelingen, so würde damit zwar kein logischer Fehler in unserer Definition nachgewiesen, aber immerhin ein Schönheitsfehler entdeckt sein. Wir ziehen nun die nächsten Folgerungen aus unserer Definition.
§ 176. Aufbau.

(\Psi \vdash (\forall p \, p \circ s \rightarrow
\forall q. [q \circ s \rightarrow (\forall d. [d \circ (a \circ p)]) = (\forall a \cdots d \circ q)]) \rightarrow
(q \circ p \circ d \circ s \rightarrow (q^{-1} \circ p \circ d \circ s \rightarrow \neg q \circ p \circ s))]) \rightarrow
\neg q \circ p \circ s)

(IIIa) :
\vdash \text{posval}(s) \rightarrow \forall p \, p \circ s \rightarrow
\forall q. [q \circ s \rightarrow (\forall d. [d \circ (a \circ p)]) = (\forall a \cdots d \circ q)]) \rightarrow
(q \circ p \circ d \circ s \rightarrow (q^{-1} \circ p \circ d \circ s \rightarrow \neg q \circ p \circ s))]) \rightarrow
\neg q \circ p \circ s)

(IIa) :
\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow
\forall q. [q \circ s \rightarrow \neg (\forall d. [d \circ (a \circ p)]) = (\forall a \cdots d \circ q)]) \rightarrow
(q \circ p \circ d \circ s \rightarrow (q^{-1} \circ p \circ d \circ s \rightarrow \neg q \circ p \circ s))]) \rightarrow
\neg q \circ p \circ s)

(Id) :
\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow
\forall q. [q \circ s \rightarrow \neg (\forall d. [d \circ (a \circ p)]) = (\forall a \cdots d \circ q)]) \rightarrow
(q \circ p \circ d \circ s \rightarrow (q^{-1} \circ p \circ d \circ s \rightarrow \neg q \circ p \circ s))]) \rightarrow
\neg q \circ p \circ s)

(IIa) :
\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow
\forall q. [q \circ s \rightarrow \neg (\forall d. [d \circ (a \circ p)]) = (\forall a \cdots d \circ q)]) \rightarrow
(q \circ p \circ d \circ s \rightarrow (q^{-1} \circ p \circ d \circ s \rightarrow \neg q \circ p \circ s))]) \rightarrow
\neg q \circ p \circ s)

(Id) :
\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow
\forall q. [q \circ s \rightarrow \neg (\forall d. [d \circ (a \circ p)]) = (\forall a \cdots d \circ q)]) \rightarrow
(q \circ p \circ d \circ s \rightarrow (q^{-1} \circ p \circ d \circ s \rightarrow \neg q \circ p \circ s))]) \rightarrow
\neg q \circ p \circ s)

(IIa) :
\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow
\forall q. [q \circ s \rightarrow \neg (\forall d. [d \circ (a \circ p)]) = (\forall a \cdots d \circ q)]) \rightarrow
(q \circ p \circ d \circ s \rightarrow (q^{-1} \circ p \circ d \circ s \rightarrow \neg q \circ p \circ s))]) \rightarrow
\neg q \circ p \circ s)
\[\vdash (\forall a \neg d \circ (a \circ p)) = (\forall a \neg a \circ (d \circ q)) \rightarrow (\forall a \neg d \circ (a \circ p)) \rightarrow a \circ (d \circ q)\]

\[(520) :: \quad \vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\forall a \neg d \circ (a \circ p)) \rightarrow (\forall a \neg a \circ (d \circ q))))\]

\[(IIa) :: \quad \vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\forall a \neg d \circ (a \circ p)) \rightarrow a \circ (d \circ q)))\]

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\exists a \neg d \circ (a \circ p)) = (\forall a \neg a \circ (d \circ q))))\]

\[(525) :: \quad \vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\exists a \neg d \circ (a \circ p)) = (\forall a \neg a \circ (d \circ q))))\]

\[(526) :: \quad \vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\exists a \neg d \circ (a \circ p)) = (\forall a \neg a \circ (d \circ q))))\]

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\exists a \neg d \circ (a \circ p)) = (\forall a \neg a \circ (d \circ q))))\]

\[(527) :: \quad \vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\exists a \neg d \circ (a \circ p)) = (\forall a \neg a \circ (d \circ q))))\]

\[(528) :: \quad \vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\exists a \neg d \circ (a \circ p)) = (\forall a \neg a \circ (d \circ q))))\]

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\exists a \neg d \circ (a \circ p)) = (\forall a \neg a \circ (d \circ q))))\]

\[(529) :: \quad \vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\exists a \neg d \circ (a \circ p)) = (\forall a \neg a \circ (d \circ q))))\]

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\exists a \neg d \circ (a \circ p)) = (\forall a \neg a \circ (d \circ q))))\]

\[(530) :: \quad \vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\exists a \neg d \circ (a \circ p)) = (\forall a \neg a \circ (d \circ q))))\]
\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow \text{ext} \varepsilon (\neg \varepsilon \circ (\alpha \circ p)) = p) \] (531)

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow \neg (\text{ext} \varepsilon (\neg \varepsilon \circ (\alpha \circ p)) \equiv p \rightarrow \text{funk}(p^{-1}) \rightarrow (\text{funk}(p) \rightarrow p^{-1} \circ p \circ s))) \] (530)

(Ic) : \[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow \neg (\text{funk}(p^{-1}) \rightarrow (\text{funk}(p) \rightarrow p^{-1} \circ p \circ s))) \] (532)

(Id) : \[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow \text{funk}(p^{-1})) \] (533)

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow \neg (\text{funk}(p^{-1}) \rightarrow (\text{funk}(p) \rightarrow p^{-1} \circ p \circ s))) \] (534)

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow \text{funk}(p)) \] (535)

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow \neg (\text{funk}(p) \rightarrow p^{-1} \circ p \circ s)) \] (536)

(IIIc) : \[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow \neg p \circ p \circ s) \] (537)

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (\neg p^{-1} \circ p \circ s \rightarrow \neg p^{-1} \circ s)) \] (529)

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (p^{-1} \circ s \rightarrow p^{-1} \circ p \circ s)) \] (538)

(531) :: \[\vdash \text{ext} \alpha \varepsilon \varepsilon (\neg \varepsilon \circ (\alpha \circ p)) = q \rightarrow q = (q^{-1})^{-1} \]

\[\vdash \text{posval}(s) \rightarrow (q \circ s \rightarrow q = (q^{-1})^{-1}) \] (539)

\[\vdash \text{posval}(s) \rightarrow (q \circ s \rightarrow (F(q) \rightarrow F((q^{-1})^{-1}))) \] (540)

S.176 |

\[\vdash \text{posval}(s) \rightarrow (q \vdash s \rightarrow (f((q^{-1} \circ p)^{-1}) \rightarrow f(p^{-1} \circ q)))\] \hspace{1cm} (542)

\[\vdash f(p^{-1} \circ q)^{-1} \rightarrow f((q^{-1} \circ p)^{-1})\] \hspace{1cm} (543)

\[\vdash f((q \circ p)^{-1}) \rightarrow f((p^{-1})^{-1} \circ q)\] \hspace{1cm} (544)

b) Beweis des Satzes

\[\vdash \text{posval}(s) \rightarrow (q \vdash s \rightarrow (p \vdash s \rightarrow q^{-1} \circ q = p \circ p^{-1}))\]

\section*{§ 177. Zerlegung.}
Wenn die Relation \(\Pi\) der Positivalklasse \(\Sigma\) angehört, so nennen wir \(\Pi^{-1} \circ \Pi\) eine Nullrelation des \(\Sigma\)-Gebietes. Ebenso nennen wir auch \(\Pi \circ \Pi^{-1}\). Wir beweisen nun den in der Ueberschrift genannten Satz mit (487). Aus ihm folgt, dass es in dem Gebiete einer Positivalklasse immer nur eine Nullrelation gibt. Zum Beweise brauchen wir die Sätze

\[\vdash \text{posval}(s) \rightarrow (q \vdash s \rightarrow (p \vdash s \rightarrow (d \vdash (a \vdash (q^{-1} \circ q) \rightarrow (a \vdash (p \circ p^{-1})))))))\] \hspace{1cm} (a)

\[\vdash \text{posval}(s) \rightarrow (q \vdash s \rightarrow (p \vdash s \rightarrow (d \vdash (a \vdash (p \circ p^{-1})))) \rightarrow (a \vdash (q^{-1} \circ q))))\) \hspace{1cm} (b)

Zum Beweise von (a) sind erforderlich die Sätze

\[\vdash \lnot d \vdash (d \vdash (p \circ p^{-1})) \rightarrow \forall a \lnot a \vdash (d \vdash p)\] \hspace{1cm} (c)

Zum Beweise von (b) bedürfen wir der Sätze

\[\vdash \lnot a \vdash (a \vdash (q^{-1} \circ q)) \rightarrow \forall a \lnot a \vdash (a \vdash q)\] \hspace{1cm} (d)

\[\vdash \lnot a \vdash (a \vdash (q^{-1} \circ q)) \rightarrow \forall a \lnot a \vdash (a \vdash q)\] \hspace{1cm} (e)

\[\vdash \lnot a \vdash (a \vdash (p \circ p^{-1})) \rightarrow a = d\] \hspace{1cm} (f)

S.177

\section*{§ 178. Aufbau.}

\[\vdash \text{funk}
\left(\begin{array}{c}
q^{-1} \\
\end{array}\right) \rightarrow (e \vdash (a \vdash q^{-1}) \rightarrow (d \vdash (e \vdash q) \rightarrow a = d))
\]

\[\times
\]

\[\vdash \text{funk}
\left(\begin{array}{c}
q^{-1} \\
\end{array}\right) \rightarrow (\lnot a = d \rightarrow (e \vdash (a \vdash q^{-1}) \rightarrow \lnot d \vdash (e \vdash q))))\] \hspace{1cm} (a)

\[\otimes\]

\[\text{im Original fehlt rechtes Zeichen [interp | bonn]}\]
$\vdash \text{funk} (q^{-1}) \rightarrow (\neg a = d \rightarrow \forall t \ [r \circ (a \circ q^{-1}) \rightarrow \neg d \circ (t \circ q)])$ \hspace{1cm} (\beta)

(15) : $\vdash \text{funk} (q^{-1}) \rightarrow (\neg a = d \rightarrow \neg d \circ (a \circ (q^{-1} \circ q)))$ \hspace{1cm} (\gamma)

\times

$\vdash \text{funk} (q^{-1}) \rightarrow (d \circ (a \circ (q^{-1} \circ q)) \rightarrow a = d)$ \hspace{1cm} (545)

(533) :: $\vdash \text{posval} (s) \rightarrow (q \circ s \rightarrow (d \circ (a \circ (q^{-1} \circ q)) \rightarrow a = d))$ \hspace{1cm} (546)

(IIIa) : $\vdash \text{posval} (s) \rightarrow (q \circ s \rightarrow (d \circ (a \circ (q^{-1} \circ q)) \rightarrow (f(d) \rightarrow f(a))))$ \hspace{1cm} (547)

$\vdash a \circ (d \circ p) \rightarrow d \circ (a \circ p^{-1})$ \hspace{1cm} (5)

(\alpha) : $\vdash a \circ (d \circ p) \rightarrow d \circ (d \circ (p \circ p^{-1}))$

\times

$\vdash \neg d \circ (d \circ (p \circ p^{-1})) \rightarrow \neg a \circ (d \circ p)$ \hspace{1cm} (\beta)

(521) : $\vdash \text{posval} (s) \rightarrow (q \circ s \rightarrow (p \circ s \rightarrow (\neg d \circ (d \circ (p \circ p^{-1})) \rightarrow \forall a [\neg a \circ (d \circ q)]))$ \hspace{1cm} (\alpha)

$\vdash \forall a [\neg a \circ (a \circ q)] \rightarrow \neg d \circ (r \circ q)$ \hspace{1cm} (I)

(\beta) : $\vdash \forall a [\neg a \circ (a \circ q)] \rightarrow (r \circ (a \circ q^{-1}) \rightarrow \neg d \circ (r \circ q))$
\[\vdash \forall a \left[\neg d \circ (a \circ q) \right] \rightarrow \forall r \left[r \circ (a \circ (q^{-1} \circ q)) \right] \] (γ)

(15) :
\[\vdash \forall a \left[\neg d \circ (a \circ q) \right] \rightarrow \neg d \circ (a \circ (q^{-1} \circ q)) \] (δ)

\[\vdash \text{posval} (s) \rightarrow (q \circ s \rightarrow (p \circ s \rightarrow \neg d \circ (d \circ (p \circ p^{-1})))) \] (ε)

\[\times\]

S.178

\[\vdash \text{posval} (s) \rightarrow (q \circ s \rightarrow (p \circ s \rightarrow (d \circ (a \circ (q^{-1} \circ q)) \rightarrow d \circ (d \circ (p \circ p^{-1}))))) \] (ζ)

(547) :
\[\vdash \text{posval} (s) \rightarrow (q \circ s \rightarrow (p \circ s \rightarrow (d \circ (a \circ (q^{-1} \circ q)) \rightarrow d \circ (a \circ (p \circ p^{-1})))))) \] (549)

\[\vdash (d \circ (a \circ (p \circ p^{-1})) \rightarrow d \circ (a \circ (q^{-1} \circ q))) \rightarrow (\text{posval} (s) \rightarrow (q \circ s \rightarrow (p \circ s \rightarrow \neg d \circ (a \circ (q^{-1} \circ q)))) = (\neg d \circ (a \circ (p \circ p^{-1})))) \] (550)

\[\vdash d \circ (e \circ p^{-1}) \rightarrow e \circ (d \circ p) \] (13) :
\[\vdash \text{funk} (p) \rightarrow (e \circ (a \circ p) \rightarrow (d \circ (e \circ p^{-1}) \rightarrow a = d)) \] (α)

\[\times\]

\[\vdash \text{funk} (p) \rightarrow (\neg a = d \rightarrow (e \circ (a \circ p) \rightarrow \neg d \circ (e \circ p^{-1}))) \] (β)

\[\vdash \text{funk} (p) \rightarrow (\neg a = d \rightarrow \forall r \left[r \circ (a \circ p) \rightarrow \neg d \circ (r \circ p^{-1}) \right]) \] (γ)

(15) :
\[\vdash \forall a \left[\neg d \circ (a \circ q) \right] \rightarrow \forall r \left[r \circ (a \circ (q^{-1} \circ q)) \right] \]
\[\vdash \text{funk}(p) \rightarrow (\neg a = d \rightarrow \neg d \circ (a \circ (p \circ p^{-1}))) \]

\[\times \]

\[\vdash \text{funk}(p) \rightarrow (d \circ (a \circ (p \circ p^{-1})) \rightarrow a = d) \]

(535) :: - - - - - - -

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (d \circ (a \circ (p \circ p^{-1})) \rightarrow a = d)) \]

(IIIC) : - - - - - - -

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (d \circ (a \circ (p \circ p^{-1})) \rightarrow (F(a) \rightarrow F(d)))) \]

(552)

\[\vdash a \circ (d \circ q) \rightarrow d \circ (a \circ q^{-1}) \]

(5) : - - - - - - -

\[\vdash a \circ (d \circ q) \rightarrow a \circ (a \circ (q^{-1} \circ q)) \]

\[\times \]

\[\vdash \neg a \circ (a \circ (q^{-1} \circ q)) \rightarrow \neg a \circ (d \circ q) \]

(554)

\[\vdash \neg a \circ (a \circ (q^{-1} \circ q)) \rightarrow \forall a \left[\neg a \circ (a \circ q) \right] \]

(555)

(523) : - - - - - - -

\[\vdash \text{posval}(s) \rightarrow (q \circ s \rightarrow (p \circ s \rightarrow
(\neg a \circ (a \circ (q^{-1} \circ q)) \rightarrow \forall a \left[\neg a \circ (a \circ p) \right]))) \)

(\alpha)

S.179

IIa \[\vdash \forall a \left[\neg a \circ (a \circ p) \right] \rightarrow \neg r \circ (a \circ p) \]

(1a) : - - - - - - -

\[\vdash \forall a \left[\neg a \circ (a \circ p) \right] \rightarrow (r \circ (a \circ p) \rightarrow \neg d \circ (r \circ p^{-1})) \]

(\beta)

\[\vdash \forall a \left[\neg a \circ (a \circ p) \right] \rightarrow \forall r \circ (a \circ p) \rightarrow \neg d \circ (r \circ p^{-1}) \]

(\gamma)

(15) : - - - - - - -
\[\vdash \forall a \left(\neg a \varphi (a \varphi p) \right) \rightarrow \neg d \varphi (a \varphi (p \circ p^{-1})) \] (δ)

\[(\alpha) :: \quad \vdash \text{posval} (s) \rightarrow (q \varphi s \rightarrow (p \varphi s \rightarrow (\neg a \varphi (a \varphi (q^{-1} \circ q))) \rightarrow \neg d \varphi (a \varphi (p \circ p^{-1})))) \] (ε)

\[\times \]

\[\vdash \text{posval} (s) \rightarrow (q \varphi s \rightarrow (p \varphi s \rightarrow (d \varphi (a \varphi (p \circ p^{-1}))) \rightarrow d \varphi (a \varphi (q^{-1} \circ q))))) \] (ζ)

(552) \[\quad \vdash \text{posval} (s) \rightarrow (q \varphi s \rightarrow (p \varphi s \rightarrow (d \varphi (a \varphi (p \circ p^{-1}))) \rightarrow d \varphi (a \varphi (q^{-1} \circ q)))) \]

(550) \[\quad \vdash \text{posval} (s) \rightarrow (q \varphi s \rightarrow (p \varphi s \rightarrow (\neg d \varphi (a \varphi (q^{-1} \circ q))) = (\neg d \varphi (a \varphi (p \circ p^{-1})))) \]

(556) \[\quad \vdash \text{posval} (s) \rightarrow (q \varphi s \rightarrow (p \varphi s \rightarrow (q^{-1} \circ q = p \circ p^{-1}))) \]

(IIIa) \[\quad \vdash \text{posval} (s) \rightarrow (q \varphi s \rightarrow (p \varphi s \rightarrow (f(p \circ p^{-1}) \rightarrow f(q^{-1} \circ q)))) \]

(557) \[\quad \vdash \text{posval} (s) \rightarrow (q \varphi s \rightarrow (p \varphi s \rightarrow (f(p \circ p^{-1}) \rightarrow f(q^{-1} \circ q)))) \]

IIIc \[\quad \vdash q^{-1} \circ q = p \circ p^{-1} \rightarrow (f(q^{-1} \circ q) \rightarrow f(p \circ p^{-1})) \]

(556) \[\quad \vdash \text{posval} (s) \rightarrow (q \varphi s \rightarrow (p \varphi s \rightarrow (f(q^{-1} \circ q) \rightarrow f(p \circ p^{-1})))) \]

(557) \[\quad \vdash \text{posval} (s) \rightarrow (q \varphi s \rightarrow (p \varphi s \rightarrow (f(q^{-1} \circ q) \rightarrow f(p^{-1} \circ p)))) \]

| S.180 |
c) Beweis des Satzes

\[\vdash p \circ s \rightarrow (\neg p^{-1} \circ s \rightarrow (\text{posval}(s) \rightarrow (r \circ s \rightarrow \\
(\neg p \circ s \rightarrow p = r^{-1} \circ r)))) \]

§ 179. Zerlegung.

Wir beweisen nun den Satz, dass eine Relation, die dem Gebiet einer Positivklasse angehört, eine Nullrelation ist, wenn weder sie selbst noch ihre Umkehrung der Positivklasse selbst angehört. Wir benutzen hierzu (516).

§ 180. Aufbau.

\[\vdash \text{posval}(s) \rightarrow (q \circ s \rightarrow (q^{-1})^{-1} \circ s) \]

\((IIIb) : \quad \vdash \neg p^{-1} \circ s \rightarrow (\text{posval}(s) \rightarrow (q \circ s \rightarrow \neg p = q^{-1})) \]

\((If) : \quad \vdash \neg p^{-1} \circ s \rightarrow (\text{posval}(s) \rightarrow (q \circ s \rightarrow \neg p = q^{-1} \circ q) \rightarrow \\
\neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q))) \]

\((559) :: \quad \vdash \neg p^{-1} \circ s \rightarrow (\text{posval}(s) \rightarrow (r \circ s \rightarrow (\neg p = r^{-1} \circ r \rightarrow \\
(q \circ s \rightarrow \neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q)))))))) \]

\(\sim \)

\[\vdash \neg p^{-1} \circ s \rightarrow (\text{posval}(s) \rightarrow (r \circ s \rightarrow (\neg p = r^{-1} \circ r \rightarrow \\
\forall q [q \circ s \rightarrow \neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q)]))))) \]

\(\delta \)

\[\vdash p \circ s \rightarrow (\neg p^{-1} \circ s \rightarrow (\text{posval}(s) \rightarrow (r \circ s \rightarrow \\
(\neg p = r^{-1} \circ r \rightarrow p \circ s)))) \]

\(\times \)
\[\vdash p \circ \delta s \rightarrow (\neg p^{-1} \circ s \rightarrow (\text{posval}(s) \rightarrow (r \circ s \rightarrow \neg p \circ s \rightarrow p = r^{-1} \circ r))) \]

§ 181. Zerlegung.

Die in der Überschrift genannten Sätze besagen, dass eine Relation, die einer Positivalklasse angehört, unverändert bleibt, wenn sie mit der Nullrelation des Gebietes ihrer Positivalklasse zusammengesetzt wird. Um den ersten Satz zu beweisen, gebrauchen wir (468) und haben dazu die Sätze

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (d \circ (a \circ q) \rightarrow d \circ (a \circ ((p^{-1} \circ p) \circ q))))) \]

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (d \circ (a \circ ((p^{-1} \circ p) \circ q)) \rightarrow d \circ (a \circ q))) \]

und Folgerungen.

§ 182. Aufbau.

\[\vdash \neg a \circ (a \circ (p^{-1} \circ p)) \rightarrow \forall a [\neg a \circ (a \circ p)] \]

(524) :

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\neg a \circ (a \circ (p^{-1} \circ p)) \rightarrow \neg d \circ (a \circ q)))) \]

(\alpha)

\[\times \]

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (d \circ (a \circ q) \rightarrow a \circ (a \circ (p^{-1} \circ p)))))) \]

(\beta)

(5) :

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (d \circ (a \circ q) \rightarrow d \circ (a \circ ((p^{-1} \circ p) \circ q))))) \]

(\gamma)
\[S.182 \]

\[\text{IIIc : } \vdash a = c \rightarrow (\neg d \circ (a \circ q) \rightarrow \neg d \circ (e \circ q)) \]

(546) \[\vdash \neg d \circ (a \circ q) \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (e \circ (a \circ (p^{-1} \circ p)) \rightarrow \neg d \circ (e \circ q)))) \]

(5) \[\vdash \neg d \circ (a \circ q) \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow \forall \tau [\tau \circ (a \circ (p^{-1} \circ p)) \rightarrow \neg d \circ (\tau \circ q)])) \]

(15) \[\vdash \neg d \circ (a \circ q) \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow \neg d \circ (a \circ ((p^{-1} \circ p) \circ q)))) \]

(\zeta) \[\times \]

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (d \circ (a \circ ((p^{-1} \circ p) \circ q)) \rightarrow d \circ (a \circ q))) \]

(\eta) \[(IVa) : \vdash (d \circ (a \circ q) \rightarrow d \circ (a \circ ((p^{-1} \circ p) \circ q))) \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow \neg d \circ (a \circ (p^{-1} \circ p) \circ q)])) \]

(\theta) \[\forall a \forall \theta \left[\neg \theta \circ (a \circ ((p^{-1} \circ p) \circ q))] = (\neg d \circ (a \circ q)))) \]

(\gamma) \[(q \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow \neg d \circ (a \circ ((p^{-1} \circ p) \circ q)))) \]

(\iota) \[\forall a \forall \theta \left[\neg \theta \circ (a \circ ((p^{-1} \circ p) \circ q))] = (\neg d \circ (a \circ q)))) \]

(486) \[\forall a \forall \theta \left[\neg \theta \circ (a \circ ((p^{-1} \circ p) \circ q))] = (\neg d \circ (a \circ q))) \]

(\lambda) \[\text{ext} \circ \text{ext} \circ \varepsilon (\neg e \circ (a \circ q)) = q \rightarrow (q \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (p^{-1} \circ p) \circ q = q))) \]

(531) \[\vdash q \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (p^{-1} \circ p) \circ q = q)) \]

(IIIa) \[\vdash q \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (f(q) \rightarrow f((p^{-1} \circ p) \circ q)))) \]
§ 183. Zerlegung.

Den zweiten Satz unserer Überschrift können wir nun mit (559) auf (566) zurückführen, indem wir in (566) statt \(p \cdot q \) schreiben. Aus dem so gewonnenen Satz lassen sich dann ähnlich wie aus (562) weitere Folgerungen ziehen.

§ 184. Aufbau.

566 \[\vdash \text{posval} (s) \rightarrow (p \cdot q \rightarrow q^{-1} \circ q = q) \]

(559) : \[\vdash (p \circ q \rightarrow p^{-1} \circ p = q) \]

(IIIa) : \[\vdash (q \circ q \rightarrow (q \circ q \rightarrow q^{-1} \circ q = q)) \]

566 \[\vdash (p \circ q \rightarrow (q \circ q \rightarrow q^{-1} \circ q = q)) \]

(571) : \[\vdash (q \circ q \rightarrow (q \circ q \rightarrow q^{-1} \circ q = q)) \]
490 $\vdash q \circ p^{-1} \circ p = q \rightarrow (q \circ p^{-1}) \circ p = q$

(571) :: $\vdash p \circ s \rightarrow (q \circ s \rightarrow (q \circ p^{-1}) \circ p = q))$

(IIIc) :: $\vdash p \circ s \rightarrow (q \circ s \rightarrow f((q \circ p^{-1}) \circ p) \rightarrow f(q)))$

(574)

(575)

S.184

IIIh $\vdash q \circ p^{-1} \circ p = q \rightarrow (q \circ p^{-1} \circ p)^{-1} = q^{-1}$

(505) :: $\vdash q \circ p^{-1} \circ p = q \rightarrow (p^{-1} \circ p) \circ q^{-1} = q^{-1}$

(542) :: $\vdash posval(s) \rightarrow (p \circ s \rightarrow (q \circ p^{-1} \circ p = q \rightarrow (p^{-1} \circ p) \circ q^{-1} = q^{-1}))$

(571) :: $\vdash p \circ s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow (p^{-1} \circ p) \circ q^{-1} = q^{-1}))$

(IIIa) :: $\vdash p \circ s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow (f(q^{-1}) \rightarrow f((p^{-1} \circ p) \circ q^{-1}))))$

(577)

571 $\vdash p \circ s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow q \circ p^{-1} \circ p = q))$

(558) :: $\vdash p \circ s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow q \circ p \circ p^{-1} = q))$

(490) :: $\vdash p \circ s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow (q \circ p) \circ p^{-1} = q))$

(IIIc) :: $\vdash p \circ s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow (f((q \circ p) \circ p^{-1}) \rightarrow f(q))))$

(578)

578 $\vdash p \circ s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow q \circ p \circ p^{-1} = q))$

(IIIc) :: $\vdash p \circ s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow (f(q \circ p \circ p^{-1}) \rightarrow f(q))))$

(580)

IIIh $\vdash (q \circ p) \circ p^{-1} = q \rightarrow ((q \circ p) \circ p^{-1})^{-1} = q^{-1}$

(544) :: $\vdash posval(s) \rightarrow (p \circ s \rightarrow ((q \circ p) \circ p^{-1} = q \rightarrow p \circ (q \circ p)^{-1} = q^{-1}))$

(505) :: $\vdash posval(s) \rightarrow (p \circ s \rightarrow ((q \circ p) \circ p^{-1} = q \rightarrow p \circ p^{-1} \circ q^{-1} = q^{-1}))$

(579) :: $\vdash p \circ s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow p \circ p^{-1} \circ q^{-1} = q^{-1}))$

(IIIc) :: $\vdash p \circ s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow (f(p \circ p^{-1} \circ q^{-1}) \rightarrow f(q^{-1}))))$

(582)

(583)
§ 185. Zerlegung.

Wir können aus (580) noch den Satz ableiten: „Wenn eine Relation, die aus einer zweiten und einer dritten Relation zusammengesetzt ist, mit der zweiten zusammenfällt, so gehört die dritte nicht derselben Positivalklasse an wie die zweite.“

Zu diesem Zwecke zeigen wir, dass die dritte Relation eine Nullrelation wäre, wenn sie derselben Positivalklasse wie die zweite angehörte, das ist aber nach (537) unmöglich.

§ 186. Aufbau.

\[
\begin{align*}
\text{III} & \vdash p \circ c = e \rightarrow (p \circ c) \circ c^{-1} = c \circ c^{-1} \\
(580) & : \\
\vdash c \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ c = c \rightarrow p = c \circ c^{-1})) & (\alpha) \\
(557) & : \\
\vdash c \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ c = c \rightarrow p = p^{-1} \circ p)) & (\beta) \\
\times \\
\vdash c \circ s \rightarrow (\text{posval}(s) \rightarrow (\neg p = p^{-1} \circ p \rightarrow \neg p \circ c = c)) & (\gamma) \\
(537) & :: \\
\vdash c \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow \neg p \circ c = c)) & (584) \\
\times \\
\vdash c \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ c = c \rightarrow \neg p \circ s)) & (585)
\end{align*}
\]

e) Sätze über das Grössere und Kleinere in einer Positivalklasse.

§ 187. Zerlegung.

Wenn \(\Sigma \); eine Positivalklasse ist und \(\Pi \) und \(K \) ihrem Gebiete angehören, so können wir \(K^{-1} \circ \Pi \circ \Sigma \) lesen: „\(\Pi \) ist grösser als \(K \) im \(\Sigma \)-Gebiete“.

Wir beweisen nun den Satz:

„Wenn von Relationen, die derselben Positivalklasse angehören, die erste \((q) \) grösser als die zweite \((r) \) ist, so gehört die aus der ersten und einer dritten \((t) \) zusammengesetzten Relation der Positivalklasse \((s) \) an, wenn die aus der zweiten \((r) \) und der dritten \((t) \) zusammengesetzte es thut.“

Wenn die dritte Relation als Umkehrung einer Relation \((p) \) aufgefasst wird, so erhalten wir als besonderen Fall den Satz:
"Wenn eine Relation \((q)\) grösser als eine zweite \((r)\) ist, die selbst grösser als eine dritte \((p)\) ist, so ist die erste \((q)\) grösser als die dritte \((p)\), wenn die Relationen derselben Positivalklasse angehören."

§ 188. Aufbau.

\[t \circ r \circ r^{-1} \circ q \circ s \rightarrow t \circ r \circ r^{-1} \circ q \circ s \]

S.186

\[q \circ s \rightarrow (\text{posval}(s) \rightarrow (r \circ s \rightarrow ((t \circ r) \circ r^{-1} \circ q \circ s \rightarrow t \circ q \circ s))) \] (\(\alpha\))

\[q \circ s \rightarrow (\text{posval}(s) \rightarrow (r \circ s \rightarrow (r^{-1} \circ q \circ s \rightarrow (t \circ r \circ s \rightarrow t \circ q \circ s)))) \] (586)

§ 189. Zerlegung.

Wir beweisen nun den Satz, dass eine Relation mit einer zweiten zusammenfällt, wenn die erste weder grösser noch kleiner als die zweite ist, während sie derselben Positivalklasse angehören. Wir führen diesen Satz auf (561) zurück.

§ 190. Aufbau.

\[a \circ c = c^{-1} \circ a \circ c \rightarrow c \circ c^{-1} \circ a = c \circ c^{-1} \circ c \]

(567) :

\[a \circ s \rightarrow (\text{posval}(s) \rightarrow (c \circ s \rightarrow (c^{-1} \circ a = c^{-1} \circ c \rightarrow a = c \circ c^{-1} \circ c))) \] (\(\alpha\))

(561) :

\[a \circ s \rightarrow (\text{posval}(s) \rightarrow (c \circ s \rightarrow (c^{-1} \circ a = c^{-1} \circ c \rightarrow a = c))) \] (\(\beta\))

(543, 528) :

\[a \circ s \rightarrow (c^{-1} \circ a \circ \neg s \rightarrow (c^{-1} \circ a^{-1} \circ s \rightarrow (\text{posval}(s) \rightarrow (c \circ s \rightarrow (a = c)))))) \] (\(\gamma\))
§ 191. Zerlegung.
Wir beweisen nun noch, dass eine Relation, die einer Positivalklasse angehört, nicht grösser ist als eine zweite Relation, wenn diese grösser als die erste ist. Dies folgt aus (538).

§ 192. Aufbau.

\[\vdash a \varepsilon s \rightarrow (\neg a^{-1} \circ a \varepsilon s \rightarrow (\text{posval } (s) \rightarrow (c \varepsilon s \rightarrow (\neg c^{-1} \circ a \varepsilon s \rightarrow a = c)))) \] (587)

×

\[\vdash a \varepsilon s \rightarrow (\neg a = c \rightarrow (\text{posval } (s) \rightarrow (c \varepsilon s \rightarrow (\neg c^{-1} \circ a \varepsilon s \rightarrow a^{-1} \circ c \varepsilon s)))) \] (588)

§ 193. Zerlegung.
Wir wollen nun, wie im § 175 angedeutet ist, die obere Grenze in einer Positivalklasse definiren. Wir sagen statt „obere Grenze derjenigen Relationen in einer Positivalklasse \(\Sigma \), die einer Klasse \(\Phi \) angehören“ kürzer: „\(\Sigma \)-Grenze von \(\Phi \)“.

Wann sagen wir nun, \(\Delta \) sei \(\Sigma \)-Grenze von \(\Phi \)? Dazu gehört
1. dass \(\Sigma \) eine Positivalklasse sei;
2. dass \(\Delta \) der \(\Sigma \)-Klasse angehöre;
3. dass jede der Klasse \(\Sigma \) angehörende Relation kleiner als \(\Delta \) der Klasse \(\Phi \) angehöre;
4. dass alle Relationen in \(\Sigma \), die grösser als \(\Delta \) sind, grösser seien als mindestens eine Relation in \(\Sigma \), die nicht der Klasse \(\Phi \) angehört.

Bevor wir die Grenze definiren, wollen wir der Abkürzung halber Folgendes festsetzen:
\[s_u := \text{ext } \varepsilon (\forall a \varepsilon s \rightarrow (a^{-1} \circ \varepsilon \circ s \rightarrow a \varepsilon u)) \] (\(\Omega \))

Diese Bezeichnung gebrauchen wir nun zur Definition der Grenze:
\[\text{grenz}_u^\Sigma := \text{ext } \varepsilon (\neg (\forall c \varepsilon s \rightarrow (c^{-1} \circ c \circ s \rightarrow \neg (c \varepsilon u) \circ (s_u))) \rightarrow (c \varepsilon (s_u) \rightarrow (c \varepsilon s \rightarrow \neg \text{posval } (s)))) \] (\(\Lambda \Lambda \))

Danach lesen wir
„\(\Delta \varepsilon \) (\(\text{grenz}_u^\Sigma \))“
„\(\Delta \) ist \(\Sigma \)-Grenze von \(\Phi \)“.
Wir ziehen dann die nächsten Folgerungen aus unsern Definitionen.

§ 194. Aufbau.

\[\Omega \vdash \text{ext } (\forall a \; [a \circ s \rightarrow (a^{-1} \circ e \circ s \rightarrow a \circ u)]) = s_d u \]

(44) :

\[\vdash \forall a \; [a \circ s \rightarrow (a^{-1} \circ e \circ s \rightarrow a \circ u)] \rightarrow e \circ (s_d u) \]

(590)

\[\Omega \vdash \text{ext } (\forall a \; [a \circ s \rightarrow (a^{-1} \circ e \circ s \rightarrow a \circ u)]) = s_d u \]

(46) :

\[\vdash e \circ (s_d u) \rightarrow \forall a \; [a \circ s \rightarrow (a^{-1} \circ e \circ s \rightarrow a \circ u)] \]

(Ia) :

\[\vdash e \circ (s_d u) \rightarrow (a \circ s \rightarrow (a^{-1} \circ e \circ s \rightarrow a \circ u)) \]

(591)

\[\forall e \circ (s_d u) : (e \circ s \rightarrow \neg \; \text{posval } (s))) = \text{grenz}_e u \]

(46) :

\[\vdash p \circ (\text{grenz}_e u) \rightarrow (\forall e \; [e \circ s \rightarrow (p^{-1} \circ e \circ s \rightarrow \neg \; e \circ (s_d u))]) \rightarrow \]

(Id) :

\[\vdash p \circ (\text{grenz}_e u) \rightarrow (p \circ s \rightarrow \neg \; \text{posval } (s))) \]

(592)

\[(Ia) : \vdash p \circ (\text{grenz}_e u) \rightarrow (e \circ s \rightarrow (p^{-1} \circ e \circ s \rightarrow \neg \; e \circ (s_d u))) \]

(593)

\[\times \]

\[\vdash e \circ (s_d u) \rightarrow (e \circ s \rightarrow (p^{-1} \circ e \circ s \rightarrow \neg \; p \circ (\text{grenz}_e u))) \]

(594)

\[\vdash p \circ (\text{grenz}_e u) \rightarrow (\forall e \; [e \circ s \rightarrow (p^{-1} \circ e \circ s \rightarrow \neg \; e \circ (s_d u))]) \rightarrow \]

(Id) :

\[\vdash p \circ (\text{grenz}_e u) \rightarrow (p \circ s \rightarrow \neg \; \text{posval } (s))) \]

(595)

\[(Ia) : \vdash p \circ (\text{grenz}_e u) \rightarrow (p \circ s \rightarrow \neg \; \text{posval } (s)) \]

(596)

\[(Ic) : \vdash p \circ (\text{grenz}_e u) \rightarrow (a \circ s \rightarrow (a^{-1} \circ p \circ s \rightarrow a \circ u)) \]

(597)

\[\vdash p \circ (\text{grenz}_e u) \rightarrow (p \circ s \rightarrow \neg \; \text{posval } (s))) \]

(Id) :

\[\vdash p \circ (\text{grenz}_e u) \rightarrow (p \circ s \rightarrow \neg \; \text{posval } (s))) \]

(595)

\[(Ic) : \vdash p \circ (\text{grenz}_e u) \rightarrow (p \circ s \rightarrow \neg \; \text{posval } (s))) \]

(595)
§ 195. Zerlegung.
Wir beweisen nun, dass es nicht mehr als eine \(\Sigma \)-Grenze einer Klasse gibt; in Zeichen:

\[
\vdash \forall e \ (e \rightarrow (p \rightarrow q))
\]

Wir benutzen dazu (587), indem wir zeigen, dass von solchen Grenzen die erste weder größer noch kleiner ist als die zweite.

§ 196. Aufbau.

\[
\vdash \forall e \ (e \rightarrow (p \rightarrow q))
\]

Wir benutzen dazu (587), indem wir zeigen, dass von solchen Grenzen die erste weder größer noch kleiner ist als die zweite.
\[\vdash p \circ (\text{grenz}_u^s) \rightarrow (q \circ (\text{grenz}_u^u) \rightarrow \neg q^{-1} \circ p \circ s) \]
\((\beta) \)

\((587) : \quad = = = = = = = = \)

\[\vdash p \circ s \rightarrow (\neg p^{-1} \circ q \circ s \rightarrow (\text{posval}(s) \rightarrow (q \circ s \rightarrow (p \circ (\text{grenz}_u^u) \rightarrow q \circ (\text{grenz}_u^u) \rightarrow p = q)))) \]
\((\gamma) \)

\((\beta, 600) :: = = = = = = = = \)

\[\vdash p \circ s \rightarrow (q \circ s \rightarrow (p \circ (\text{grenz}_u^u) \rightarrow q \circ (\text{grenz}_u^u) \rightarrow p = q)) \]
\((\delta) \)

\((599, 599) :: = = = = = = = = \)

\[\vdash p \circ (\text{grenz}_u^u) \rightarrow (q \circ (\text{grenz}_u^u) \rightarrow p = q) \]
\((602) \)

\[\Delta. \text{ Die Positivklasse.} \]

a) Definition der Funktion \(\text{pos} (\xi) \) und Folgerungen.

§ 197. Zerlegung.

Wir haben im § 175 die Frage gestellt: Wann ist eine Klasse eine Positivklasse? Diese Frage ist noch nicht beantwortet worden. Wir haben uns damals genötigt gesehen, zunächst den weiteren Begriff der Positivalklasse zu definieren. Nachdem wir damit die \(\Sigma \)-Grenze einer Klasse definirt haben, können wir nun jene Frage beantworten. Damit eine Klasse \(\Sigma \) eine Positivklasse sei, muss sie folgende Eigenschaften haben:

1. sie muss eine Positivalklasse sein;
2. zu jeder ihr angehörenden Relation muss es eine andere geben, die ihr gleichfalls angehört und kleiner ist;
3. wenn es eine Relation der Klasse \(\Sigma \) gibt der Art, dass in \(\Sigma \) alle kleineren Relationen einer Klasse \(\Phi \) angehören, während es in \(\Sigma \) eine Relation gibt, die der Klasse \(\Phi \) nicht angehört, so muss es eine \(\Sigma \)-Grenze der \(\Phi \) geben.

Wir stellen demnach die Definition auf:

\[\text{pos} (s) := (\neg (\forall u [\forall r [\neg r \circ (\text{grenz}_u^u)]) \rightarrow \forall e [e \circ (s \circ u) \rightarrow (e \circ s \rightarrow \forall a [a \circ s \rightarrow a \circ u]])] \rightarrow (\forall a [\forall e [e \circ s \rightarrow \neg e^{-1} \circ a \circ s] \rightarrow \neg a \circ s] \rightarrow \neg \text{posval}(s)]) = \text{pos} (s) \]

Wir lesen ',pos (\Sigma)': \(\Sigma \) ist eine Positivklasse'. Ziehen wir aus (AB) jetzt die nächsten Folgerungen!

§ 198. Aufbau.

\(\text{AB} \vdash (\neg (\forall u [\forall r [\neg r \circ (\text{grenz}_u^u)]) \rightarrow \forall e [e \circ (s \circ u) \rightarrow (e \circ s \rightarrow \\
\forall a [a \circ s \rightarrow a \circ u]])] \rightarrow (\forall a [\forall e [e \circ s \rightarrow \neg e^{-1} \circ a \circ s] \rightarrow \neg a \circ s] \rightarrow \neg \text{posval}(s)])) = \text{pos} (s) \)

\((IIIa) : \)

\(\vdash \text{pos} (s) \rightarrow (\neg (\forall u [\forall r [\neg r \circ (\text{grenz}_u^u)]) \rightarrow \forall e [e \circ (s \circ u) \rightarrow (e \circ s \rightarrow \\
\forall a [a \circ s \rightarrow a \circ u]])] \rightarrow (\forall a [\forall e [e \circ s \rightarrow \neg e^{-1} \circ a \circ s] \rightarrow \neg a \circ s] \rightarrow \neg \text{posval}(s)])) \)

\((Id) : \quad = = = = = = = = \)

\[\vdash \neg (\forall u [\forall r [\neg r \circ (\text{grenz}_u^u)]) \rightarrow (e \circ s \rightarrow \\
\forall a [a \circ s \rightarrow a \circ u]])] \rightarrow (\forall a [\forall e [e \circ s \rightarrow \neg e^{-1} \circ a \circ s] \rightarrow \neg a \circ s] \rightarrow \neg \text{posval}(s)])) \]
\((603) \)
\[\vdash \text{pos}(s) \rightarrow \forall u [\forall e [\neg \sigma (\text{grenz}_s^u)] \rightarrow \forall e [e \sigma (s \Delta u) \rightarrow (e \sigma s \rightarrow \\
\forall a [a \sigma s \rightarrow a \sigma u)])] \]

\[(\alpha)\]

\[\vdash \text{pos}(s) \rightarrow (\forall t [\neg t \sigma (\text{grenz}_s^u)] \rightarrow \forall e [e \sigma (s \Delta u) \rightarrow (e \sigma s \rightarrow \\
\forall a [a \sigma s \rightarrow a \sigma u])]) \]

\[(\beta)\]

\[\vdash \text{pos}(s) \rightarrow (\forall t [\neg t \sigma (\text{grenz}_s^u)] \rightarrow (e \sigma (s \Delta u) \rightarrow (e \sigma s \rightarrow \\
\forall a [a \sigma s \rightarrow a \sigma u])) \]

\[(\gamma)\]

\[\vdash \text{pos}(s) \rightarrow (\forall t [\neg t \sigma (\text{grenz}_s^u)] \rightarrow (e \sigma (s \Delta u) \rightarrow (e \sigma s \rightarrow \\
(a \sigma s \rightarrow a \sigma u))) \]

\[(\delta)\]

\[\vdash \text{pos}(s) \rightarrow \neg (\forall u [\forall e [\neg \sigma (\text{grenz}_s^u)] \rightarrow \forall e [e \sigma (s \Delta u) \rightarrow (e \sigma s \rightarrow \\
\forall a [a \sigma s \rightarrow a \sigma u])]) \rightarrow \\
(\forall a [\forall e [e \sigma s \rightarrow \neg e^{-1} \circ a \sigma s] \rightarrow \neg a \sigma s] \rightarrow \neg \text{posval}(s)) \]

\[(Ie)\]

\[\vdash \text{pos}(s) \rightarrow \neg (\forall u [\forall e [e \sigma s \rightarrow \neg e^{-1} \circ a \sigma s] \rightarrow \neg a \sigma s] \rightarrow \neg \text{posval}(s)) \]

\[(Ic)\]

\[\vdash \text{pos}(s) \rightarrow (\forall a [\forall e [e \sigma s \rightarrow \neg e^{-1} \circ a \sigma s] \rightarrow \neg a \sigma s] \rightarrow \neg \text{posval}(s)) \]

\[(Ib)\]

\[\vdash \text{pos}(s) \rightarrow \neg (\forall a [\forall e [e \sigma s \rightarrow \neg e^{-1} \circ a \sigma s] \rightarrow \neg a \sigma s] \rightarrow \neg \text{posval}(s)) \]

\[\vdash \text{pos}(s) \rightarrow (p \sigma s \rightarrow (a \sigma s \rightarrow a \sigma (p \sigma (\text{arch}_s^p)))) \]
\[\text{(Archimedisches Axiom.)} \]

\[\text{b) Beweis des Satzes} \]

\[\text{wenn} \rightarrow (p \sigma s \rightarrow (a \sigma s \rightarrow a \sigma (p \sigma (\text{arch}_s^p)))) \]

\[\text{Archimedisches Axiom.} \]

\[\text{§ 199. Zerlegung.} \]

Wir beweisen nun den Satz:

„Wenn zwei Relationen derselben Positivklasse angehören, so gibt es ein Vielfaches der einen, das nicht kleiner als die andere ist.“

\[\text{Archimedisches Axiom.} \]

\[\text{Den Gedanken, dass es ein Vielfaches von II gibt, das nicht kleiner als } A \text{ ist, können wir so ausdrücken:} \]

\[\neg \forall t [\Pi \sigma (t \sigma \leq \text{n}) \rightarrow t^{-1} \circ A \sigma \Sigma] \]

\[\text{S.192} \]
sofern Σ die Positivklasse ist. Zur Abkürzung führen wir eine besondere Bezeichnung ein, indem wir definieren:

$$\text{arch}^p_s := \text{ext} \text{ext} \varepsilon (\neg \forall t [\alpha \varepsilon (t \leq_{*p}) \rightarrow t^{-1} \circ \varepsilon s])$$ (AΓ)

Danach lesen wir, falls Σ eine Positivklasse ist und A und Π ihr angehören:

$\text{ext}_A \geq \Pi \geq (\text{arch}^p_s)$

"es gibt ein Vielfaches von Π, das nicht kleiner ist als A".

Mit dieser Bezeichnung haben wir in der Überschrift den oben in Worten angeführten Satz.

Ziehen wir zunächst aus (AΓ) einige Folgerungen!

§ 200. Aufbau.

$$A \text{Γ} \vdash \text{ext} \text{ext} \varepsilon (\neg \forall t [\alpha \varepsilon (t \leq_{*p}) \rightarrow t^{-1} \circ \varepsilon s]) = \text{arch}^p_s$$ (6) :

$$\vdash a \varepsilon (q \varepsilon (\text{arch}^p_s)) \rightarrow \neg \forall t [q \varepsilon (t \leq_{*p}) \rightarrow t^{-1} \circ a \varepsilon s] \quad (\alpha)$$

$$\times$$

$$\vdash \forall t [q \varepsilon (t \leq_{*p}) \rightarrow t^{-1} \circ a \varepsilon s] \rightarrow \neg a \varepsilon (q \varepsilon (\text{arch}^p_s))$$ (608)

$$A \text{Γ} \vdash \text{ext} \text{ext} \varepsilon (\neg \forall t [\alpha \varepsilon (t \leq_{*p}) \rightarrow t^{-1} \circ \varepsilon s]) = \text{arch}^p_s$$ (10) :

$$\vdash \neg \forall t [q \varepsilon (t \leq_{*p}) \rightarrow t^{-1} \circ a \varepsilon s] \rightarrow a \varepsilon (q \varepsilon (\text{arch}^p_s)) \quad (\alpha)$$

$$\times$$

$$\vdash \neg a \varepsilon (q \varepsilon (\text{arch}^p_s)) \rightarrow \forall t [q \varepsilon (t \leq_{*p}) \rightarrow t^{-1} \circ a \varepsilon s] \quad (\beta)$$

$$IIa : \quad \neg \neg \neg \neg \neg \neg$$

$$\vdash a \varepsilon (q \varepsilon (\text{arch}^p_s)) \rightarrow (q \varepsilon (t \leq_{*p}) \rightarrow t^{-1} \circ a \varepsilon s) \quad (609)$$

$$\times$$

$$\vdash t^{-1} \circ a \varepsilon s \rightarrow (q \varepsilon (t \leq_{*p}) \rightarrow a \varepsilon (q \varepsilon (\text{arch}^p_s))) \quad (610)$$

§ 201. Zerlegung.

Um nun den Satz des § 199 zu beweisen, stellen wir folgende Betrachtung an. Wir nehmen an, q und p gehören der Positivklasse s an. Wenn nun jedes Glied der mit q beginnenden $*p$-Reihe kleiner als a wäre, so käme es nach (604) eine s-Grenze von $q \varepsilon (\text{arch}^p_s)$; denn es gäbe in der Klasse s auch Relationen — z. B. q —, die von Gliedern jener Reihe mindestens erreicht werden, und das gilt dann auch von allen kleineren. Diese s-Grenze m von $q \varepsilon (\text{arch}^p_s)$ ist offenbar abhängig von q. Wir werden zeigen, dass $p \circ c$ die s-Grenze von $p \circ q \varepsilon (\text{arch}^p_s)$ ist, wenn c die s-Grenze von $p \varepsilon (\text{arch}^p_s)$ ist. Nun fallen aber diese beiden s-Grenzen offenbar
zusammen, sodass \(p \circ c \) mit \(c \) zusammenfallen müsste. Dann könnte nach (585) \(p \) nicht der Klasse \(s \) angehören. Hieraus ergibt sich die Falschheit der Annahme, dass jedes Glied der mit \(p \) anfangenden \(p \)-Reihe — d. h. jedes Vielfache von \(p \) — kleiner als \(a \) sei.

Unsere erste Aufgabe wird sein, den Satz
\[
\vdash c \left(\text{grenz}_s (p \circ a) \right) \rightarrow (p \circ c \left(\text{grenz}_s (p \circ p \circ \text{arch}_p) \right))
\]
zu beweisen. Dazu brauchen wir nach (601) den Satz
\[
\vdash c \left(\text{grenz}_s (q \circ \text{arch}_p) \right) \rightarrow (r \circ s \rightarrow (r^{-1} \circ c \circ s \rightarrow r \circ (q \circ \text{arch}_p)))
\]
worin dann für \(r^* , p^{-1} \circ a \) zu setzen ist, nachdem statt \(r \circ s^* , r \circ s^* \) eingeführt ist. Den Übergang zu (\(\beta \)) vermittelt dann der Satz
\[
\vdash b \circ d \circ p = b \circ a \rightarrow (b \circ d) \circ p = b \circ a
\]
(\(IIIh \)) :

\[
\vdash d \circ p = a \rightarrow (b \circ d) \circ p = b \circ a \quad (\alpha)
\]

(492) :

\[
\vdash d \circ(a \circ p) \rightarrow (b \circ d) \circ p = b \circ a \quad (\beta)
\]

(495) :

\[
\vdash d \circ(a \circ p) \rightarrow b \circ d \circ(b \circ a \circ p)
\]

(611)

(137) :

\[
\vdash r \circ(b \circ d \circ a \circ p) \rightarrow (d \circ(a \circ p) \rightarrow r \circ(b \circ a \circ a \circ p)) \quad (\alpha)
\]

\[
\vdash \forall \circ[r \circ(b \circ d \circ a \circ p)]
\]

\[
\forall a [d \circ(a \circ p) \rightarrow r \circ(b \circ a \circ a \circ p)]
\]

(\(144 \)) :

\[
\vdash q \circ(t \circ a \circ a \circ p) \rightarrow (r \circ(b \circ q \circ a \circ a \circ p) \rightarrow r \circ(b \circ t \circ a \circ a \circ p)) \quad (612)
\]

(612) :
\[
\vdash q \circ (t \leq_{sp}) \rightarrow b \circ q \circ (b \circ t \leq_{sp})
\]

(613)

\[
506 \vdash (b \circ t)^{-1} \circ a \circ s \rightarrow t^{-1} \circ b^{-1} \circ a \circ s
\]

(609)::

\[
\vdash \neg a \circ (b \circ q \circ (arch^w)) \rightarrow
\]

\[
(b \circ q \circ (b \circ t \leq_{sp}) \rightarrow t^{-1} \circ b^{-1} \circ a \circ s)
\]

(\alpha)

(613)::

\[
\vdash a \circ (b \circ q \circ (arch^w)) \rightarrow (q \circ (t \leq_{sp}) \rightarrow t^{-1} \circ b^{-1} \circ a \circ s)
\]

(\beta)

\[
\forall t \vdash q \circ (t \leq_{sp}) \rightarrow t^{-1} \circ b^{-1} \circ a \circ s
\]

(\gamma)

S.194

\[
\vdash a \circ (b \circ q \circ (arch^w)) \rightarrow \neg b^{-1} \circ a \circ (q \circ (arch^w))
\]

(\delta)

\[
\times
\]

\[
\vdash b^{-1} \circ a \circ (q \circ (arch^w)) \rightarrow a \circ (b \circ q \circ (arch^w))
\]

(614)

§ 203. Zerlegung.

Um, wie im § 201 angedeutet worden, \(r \circ s \) durch \(r \circ \delta \circ s \) zu ersetzen, beweisen wir den Satz

\[
\vdash r \circ \delta \circ s \rightarrow (\text{posval}(s) \rightarrow (q \circ s \rightarrow (q^{-1} \circ r \circ s \rightarrow r \circ s)))
\]

d. h. „eine Größen ist positiv, wenn sie größer ist als eine positive Grösse ihres Gebietes.“

§ 204. Aufbau.

\[
505 \vdash (v \circ q)^{-1} \circ s \rightarrow \neg q^{-1} \circ v^{-1} \circ s
\]

(538)::

\[
\vdash \text{posval}(s) \rightarrow (v \circ q \circ s \rightarrow \neg q^{-1} \circ v^{-1} \circ s)
\]

(\alpha)

(529)::

\[
\vdash \text{posval}(s) \rightarrow (q \circ s \rightarrow (v \circ s \rightarrow \neg q^{-1} \circ v^{-1} \circ s))
\]

(\beta)

(III d):

\[
\vdash \text{posval}(s) \rightarrow (q \circ s \rightarrow (v \circ s \rightarrow (q^{-1} \circ r \circ s \rightarrow \neg r = v^{-1})))
\]

(\gamma)
\[\vdash \neg ((v^{-1} \circ v) \circ q)^{-1} \varphi_s \rightarrow \neg q^{-1} \circ (v^{-1} \circ v)^{-1} \varphi_s\]

(542) :

\[\vdash \text{posval}(s) \rightarrow (v \varphi_s \rightarrow (\neg ((v^{-1} \circ v) \circ q)^{-1} \varphi_s \rightarrow \neg q^{-1} \circ v^{-1} \circ v \varphi_s))\] \hspace{1cm} (\delta)

(538) ::

\[\vdash \text{posval}(s) \rightarrow ((v \varphi_s \rightarrow \neg q^{-1} \circ v^{-1} \circ v \varphi_s))\] \hspace{1cm} (\varepsilon)

(563) ::

\[\vdash \text{posval}(s) \rightarrow (q \varphi_s \rightarrow \neg q^{-1} \circ v^{-1} \circ v \varphi_s))\] \hspace{1cm} (\zeta)

(III)d ::

\[\vdash \text{posval}(s) \rightarrow (v \varphi_s \rightarrow (q \varphi_s \rightarrow (q^{-1} \circ r \varphi_s \rightarrow \neg r = v^{-1} \circ v)))\]

(I) :

\[\vdash \neg r = v^{-1} \rightarrow (\text{posval}(s) \rightarrow (v \varphi_s \rightarrow (q \varphi_s \rightarrow (q^{-1} \circ r \varphi_s \rightarrow \neg (\neg r = v^{-1} \rightarrow r = v^{-1} \circ v)))))))\]

(6) ::

\[\vdash \text{posval}(s) \rightarrow (q \varphi_s \rightarrow (q^{-1} \circ r \varphi_s \rightarrow (v \varphi_s \rightarrow \neg (\neg r = v^{-1} \rightarrow r = v^{-1} \circ v))))\]

(\gamma) ::

\[\vdash \text{posval}(s) \rightarrow (q \varphi_s \rightarrow (\neg r = v^{-1} \rightarrow r = q^{-1} \circ q)))\]

(\kappa) ::

\[\vdash \text{posval}(s) \rightarrow (q \varphi_s \rightarrow (q^{-1} \circ r \varphi_s \rightarrow \forall q \ [q \varphi_s \rightarrow \neg (\neg r = q^{-1} \rightarrow r = q^{-1} \circ q))))\]

(516) :

\[\vdash r \varphi \delta_s \rightarrow (\text{posval}(s) \rightarrow (q \varphi_s \rightarrow (q^{-1} \circ r \varphi_s \rightarrow r \varphi_s)))\]

(615)

(609) ::

\[\vdash r \varphi \delta_s \rightarrow (q \varphi_s \rightarrow (\neg r \varphi (q \varphi (\text{arch}_p))) \rightarrow (q \varphi (q \varphi \overset{*}{\leq}_p \rightarrow r \varphi_s)))\]

(\alpha) ::

(140) ::
§ 205. Zerlegung.

Um den Satz (α) des § 201 zu beweisen, brauchen wir ausser dem soeben bewiesenen nach (601) noch den Satz |
der besagt, dass es unter den Voraussetzungen für jede Relation \(e \) grösser als \(p \circ e \) eine
Relation gibt, die kleiner ist als \(e \) und positiv und von keinem Gliede der mit \(p \circ p \) anfangenden \(p \)-Reihe erreicht wird, falls \(c \)-Grenze von \((p \circ (arch^p_v)) \) ist. Wir zeigen, dass \(p \circ c \) selbst nicht erreicht wird. Daraus nämlich, dass \(c \)-Grenze von \(p \circ (arch^p_v) \) ist, folgt, dass \(c \) von Gliedern der mit \(p \) anfangenden \(p \)-Reihe nicht übertroffen und also nicht erreicht wird. Daraus folgt dann weiter, dass \(p \circ c \) von Gliedern der mit \(p \circ p \) anfangenden \(p \)-Reihe nicht erreicht wird.

Wir beweisen zunächst den Satz

\[
\vdash c \circ (grenz^p_v (p \circ (arch^p_v))) \rightarrow \text{posval}(s) \rightarrow (p \circ c \circ s \rightarrow (p \circ s \rightarrow (c \circ s \rightarrow
((p \circ c)^{-1} \circ e \circ s \rightarrow \neg e \circ s (s \circ (p \circ p \circ (arch^p_v)))))))
\]

(\(\alpha \)

\[
\vdash p \circ (p \circ (t \circ \leq_{*p})) \rightarrow \text{posval}(s) \rightarrow (p \circ s \rightarrow p \circ (p^{-1} \circ t \circ \leq_{*p}))
\]

(\(\gamma \)

Dieser folgt aus (612).

\section*{Aufbau.}

\textbf{206.}

\begin{align*}
491 \vdash F((t^{-1} \circ b) \circ c) & \rightarrow F(t^{-1} \circ b \circ c) \\
(542) & : \quad - - - - - - - - \\
\vdash \text{posval}(s) \rightarrow (b \circ s \rightarrow (F((b^{-1} \circ t)^{-1} \circ c) \rightarrow F(t^{-1} \circ b \circ c))) & \quad (620)
\end{align*}

\begin{align*}
612 \vdash p \circ p \circ (t \circ \leq_{*p}) & \rightarrow \\
p \circ (p^{-1} \circ p \circ p \circ \leq_{*p}) & \rightarrow p \circ (p^{-1} \circ t \circ \leq_{*p})
\end{align*}

(569) : \quad - - - - - - - -

\begin{align*}
\vdash p \circ p \circ (t \circ \leq_{*p}) & \rightarrow \text{posval}(s) \rightarrow (p \circ s \rightarrow \\
p \circ (p \circ \leq_{*p}) & \rightarrow p \circ (p^{-1} \circ t \circ \leq_{*p}))
\end{align*}

(140) : \quad - - - - - - - - - -

\begin{align*}
\vdash p \circ p \circ (t \circ \leq_{*p}) & \rightarrow \text{posval}(s) \rightarrow (p \circ s \rightarrow p \circ (p^{-1} \circ t \circ \leq_{*p}))
\end{align*}

(609) : \quad - - - - - - - - - -

\begin{align*}
\vdash c \circ (p \circ (arch^p_v)) & \rightarrow (p \circ p \circ (t \circ \leq_{*p}) \circ (posval(s)) \rightarrow (p \circ s \circ

(p^{-1} \circ t)^{-1} \circ c \circ s)))
\end{align*}

(\(\alpha \)

\begin{align*}
\vdash c \circ (p \circ (arch^p_v)) & \rightarrow (posval(s) \rightarrow (p \circ s \rightarrow \\
(p \circ p \circ (t \circ \leq_{*p}) \circ t^{-1} \circ p \circ c \circ s))
\end{align*}

(\(\beta \)

\begin{align*}
\vdash c \circ (p \circ (arch^p_v)) & \rightarrow (posval(s) \rightarrow (p \circ s \rightarrow \\
(p \circ p \circ (t \circ \leq_{*p}) \circ t^{-1} \circ p \circ c \circ s)))
\end{align*}

(\(\beta \)}
\[\vdash \neg \exists c (p \circ (\text{arch}_p^c)) \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow \forall t \ [p \circ p \circ (t \circ \preceq_{\ast} s) \rightarrow t^{-1} \circ p \circ c \circ s])\]

(608) : \quad - \quad - \quad - \quad - \quad - \quad -

\[\vdash \neg p \circ c \circ (p \circ p \circ (\text{arch}_p^c)))\]

(622)

§ 207. Zerlegung.

In Ausführung unseres Planes im § 205 beweisen wir, dass unter unserm Voraussetzungen, wenn \(c\) eine Grenze von \(p \circ (\text{arch}_p^c)\) ist, \(c\) von Gliedern der mit \(p\) angfangenden \(\ast p\)-Reihe nicht erreicht werden kann, nämlich den Satz

\[\vdash p \circ s \rightarrow (\text{posval}(s) \rightarrow (c \circ (\text{grenz}_p^c(p \circ (\text{arch}_p^c)))) \rightarrow \neg c \circ (p \circ (\text{arch}_p^c)))) \quad (\alpha)\]

Wenn \(c\) vom Gliede \(t\) der mit \(p\) angfangenden \(\ast p\)-Reihe erreicht würde, so wäre \(c\) von dem nächstfolgenden Gliede dieser Reihe \(t \circ p\) übertroffen. In jedem Falle also, wo \(c\) von Gliedern unserer Reihe erreicht wird, gibt es auch eins, von dem es übertroffen wird. Wenn aber \(t\) ein Glied unserer Reihe ist und wenn \(a\) kleiner als \(t\) ist, so wird \(a\) von einem Gliede unserer Reihe übertroffen, was, falls \(t\) grösser als \(c\) ist, nach (594) dem widerspricht, dass \(c\) eine Grenze von \(p \circ (\text{arch}_p^c)\) sein soll. Wir beweisen den Satz:

\[\vdash \text{posval}(s) \rightarrow (p \circ (t \circ \leq_{\ast} p) \rightarrow (t \circ s \rightarrow (c \circ (\text{grenz}_p^c(p \circ (\text{arch}_p^c))) \rightarrow c^{-1} \circ a \circ s))) \quad (\beta)\]

Mit (588) folgen wir hieraus, dass unter unseren Voraussetzungen \(t\) kleiner als \(c\) ist, da auch der Fall, wo \(t = c\) ist, wie oben gesehen, ausgeschlossen ist. \(\Rightarrow\) Es ist dann noch das Vorderglied \(\quad (588) \quad (32)\), \(t \circ s\) wegzuschaffen. Das geschieht mit dem zunächst zu beweisenden Satz

\[\vdash q \circ (t \circ \leq_{\ast} p) \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow t \circ s))) \quad (\gamma)\]

§ 208. Aufbau.

529 \[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (d \circ s \circ d \circ p \circ s))\]

(493) :

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow (d \circ s \rightarrow (d \circ (a \circ \preceq_{\ast} p) \rightarrow a \circ s))) \quad (\alpha)\]

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow \forall a \ [\circ d \circ s \rightarrow \forall a \ [d \circ (a \circ \preceq_{\ast} p) \rightarrow a \circ s]]) \quad (\beta)\]

(144) : \quad - \quad - \quad - \quad - \quad - \quad -

\(^{30}\)Es ist dann noch das Unterglied

\(^{32}\)Textkorrektur infolge modernisierter Formelnotation!
⊢ q ◦ (t ◦ \leq_p) \to (\posval (s) \to (p ◦ s \to (q ◦ s \to t ◦ s))) \quad (623)

\vdash q ◦ (t ◦ \leq_p) \to (\posval (s) \to (p ◦ s \to (q ◦ s \to t ◦ s))) \quad (624)

\hline

496 ⊢ t ◦ (t \circ p ◦ s)

(137) :

\vdash q ◦ (t ◦ \leq_p) \to q ◦ (t \circ p ◦ \leq_p) \quad (625)

\hline

529 ⊢ \posval (s) \to (c ◦ s \to (p ◦ s \to p \circ c ◦ s))

(600, 599) ::

\vdash c ◦ (\grenz \cap) \to (p ◦ s \to p \circ c ◦ s) \quad (626)

\hline

610 ⊢ \neg t^{-1} \circ a ◦ s \to (p ◦ (t ◦ \leq_p) \to a ◦ (p ◦ (\text{arch}^p)))

(589) ::

\vdash \posval (s) \to (p ◦ (t ◦ \leq_p) \to

(a ◦ s \to (a^{-1} \circ t ◦ s \to a ◦ (p ◦ (\text{arch}^p))))) \quad (\alpha)

\hline

\vdash \posval (s) \to (p ◦ (t ◦ \leq_p) \to

\forall a [a ◦ s \to (a^{-1} \circ t ◦ s \to a ◦ (p ◦ (\text{arch}^p)))])) \quad (\beta)

(590) :

\vdash \posval (s) \to (p ◦ (t ◦ \leq_p) \to t ◦ (s \sqcap (p ◦ (\text{arch}^p)))) \quad (\gamma)

(594) :

\vdash \posval (s) \to (p ◦ (t ◦ \leq_p) \to (t ◦ s \to

(c^{-1} \circ t ◦ s \to \neg c ◦ (\grenz \cap (p ◦ (\text{arch}^p))))) \quad (\delta)

\times

\vdash \posval (s) \to (p ◦ (t ◦ \leq_p) \to (t ◦ s \to

(c ◦ (\grenz \cap (p ◦ (\text{arch}^p))) \to \neg c^{-1} \circ t ◦ s))) \quad (\epsilon)
IIIId \(\vdash \neg c^{-1} \circ t \circ p \circ s \rightarrow (t^{-1} \circ t \circ p \circ s \rightarrow \neg t = c) \)

(569) ::

\[\vdash \neg c^{-1} \circ t \circ p \circ s \rightarrow (\text{posval}(s) \rightarrow (t \circ s \rightarrow (p \circ s \rightarrow \neg t = c))) \]

(\(\zeta\))

(588) :

\[\vdash \neg c^{-1} \circ t \circ p \circ s \rightarrow (t \circ s \rightarrow (p \circ s \rightarrow (c \circ s \rightarrow (\neg c^{-1} \circ t \circ p \circ s \rightarrow t^{-1} \circ c \circ s)))) \]

(\(\eta\))

(\(e, e\) ::)

\[\vdash p \circ (t \circ p \circ t \leq_\text{arch}_p) \rightarrow (t \circ p \circ s \rightarrow (p \circ s \rightarrow (c \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ (t \circ \text{arch}_p \leq_\text{arch}_p) \rightarrow (t \circ s \rightarrow (c \circ (\text{grenz}_{s}(p \circ (\text{arch}_p^{\circ}))) \rightarrow t^{-1} \circ c \circ s)))))) \]

(\(\delta\))

(529, 625) ::

\[\vdash p \circ s \rightarrow (c \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ (t \circ \text{arch}_p \leq_\text{arch}_p) \rightarrow (t \circ s \rightarrow (c \circ (\text{grenz}_{s}(p \circ (\text{arch}_p^{\circ}))) \rightarrow t^{-1} \circ c \circ s)))))) \]

(623, 599) ::

(\(S.199\))

\[\vdash p \circ s \rightarrow (\text{posval}(s) \rightarrow (c \circ (\text{grenz}_{s}(p \circ (\text{arch}_p^{\circ}))) \rightarrow (p \circ (t \circ \text{arch}_p \leq_\text{arch}_p) \rightarrow t^{-1} \circ c \circ s))) \]

(\(\kappa\))

\[\vdash p \circ s \rightarrow (\text{posval}(s) \rightarrow (c \circ (\text{grenz}_{s}(p \circ (\text{arch}_p^{\circ}))) \rightarrow (p \circ (t \circ \text{arch}_p \leq_\text{arch}_p) \rightarrow t^{-1} \circ c \circ s))) \]

(\(\lambda\))

(608) :

\[\vdash p \circ s \rightarrow (\text{posval}(s) \rightarrow (c \circ (\text{grenz}_{s}(p \circ (\text{arch}_p^{\circ}))) \rightarrow (p \circ (t \circ \text{arch}_p \leq_\text{arch}_p) \rightarrow t^{-1} \circ c \circ s))) \]

(\(\mu\))

(622) :

\[\vdash c \circ (\text{grenz}_{s}(p \circ (\text{arch}_p^{\circ}))) \rightarrow (\text{posval}(s) \rightarrow (p \circ c \circ (p \circ p \circ (\text{arch}_p^{\circ})))) \]

(\(\nu\))
\[\vdash c \circ (\text{grenz}_s (p \circ \text{arch}_s)) \rightarrow (\text{posval}_s \rightarrow (p \circ c \circ (p \circ p \circ \text{arch}_s) \rightarrow \neg p \circ s)) \]

(591) ::

\[
\vdash c \circ (\text{grenz}_s (p \circ \text{arch}_s)) \rightarrow (\text{posval}_s \rightarrow (c \circ (\text{sel}(p \circ p \circ \text{arch}_s)) \rightarrow (p \circ c \circ s \rightarrow ((p \circ c)^{-1} \circ c \circ s \rightarrow \neg p \circ s))) \]
\[
\times
\]

\[
\vdash c \circ (\text{grenz}_s (p \circ \text{arch}_s)) \rightarrow (\text{posval}_s \rightarrow (p \circ c \circ s \rightarrow (p \circ c \circ s \rightarrow ((p \circ c)^{-1} \circ c \circ s \rightarrow \neg e \circ (\text{sel}(p \circ p \circ \text{arch}_s))))))) \]

(I) :

\[
\vdash c \circ (\text{grenz}_s (p \circ \text{arch}_s)) \rightarrow (\text{posval}_s \rightarrow (p \circ c \circ s \rightarrow (p \circ c \circ s \rightarrow (e \circ s \rightarrow ((p \circ c)^{-1} \circ e \circ s \rightarrow \neg e \circ (\text{sel}(p \circ p \circ \text{arch}_s))))))) \]

(ρ)

\[
\vdash c \circ (\text{grenz}_s (p \circ \text{arch}_s)) \rightarrow (\text{posval}_s \rightarrow (p \circ c \circ s \rightarrow (p \circ c \circ s \rightarrow (e \circ s \rightarrow ((p \circ c)^{-1} \circ e \circ s \rightarrow \neg e \circ (\text{sel}(p \circ p \circ \text{arch}_s))))))) \]

(σ)

\[
(601) ::
\]

\[
\vdash c \circ (\text{grenz}_s (p \circ \text{arch}_s)) \rightarrow (\text{posval}_s \rightarrow (p \circ s \rightarrow (p \circ c \circ (p \circ p \circ \text{arch}_s))) \rightarrow (p \circ c \circ s \rightarrow (p \circ c \circ (\text{pop}_s \circ \text{arch}_s))))) \]

(τ)

\[
(619, 626) ::
\]

\[
\vdash \text{posval}_s \rightarrow (c \circ (\text{grenz}_s (p \circ \text{arch}_s)) \rightarrow (p \circ s \rightarrow (p \circ c \circ (\text{pop}_s \circ \text{arch}_s))))) \]

(υ)

\[
(600) ::
\]

\[
\vdash c \circ (\text{grenz}_s (p \circ \text{arch}_s)) \rightarrow (p \circ s \rightarrow p \circ c \circ (\text{grenz}_s (\text{pop}_s \circ \text{arch}_s))) \]

(627)

§ 209. Zerlegung.
In Ausführung unseres Plane des § 201 beweisen wir nun, dass die s-Grenzen von \(p \circ \text{arch}^p \) und von \(p \circ \text{arch}^p \) zusammenfallen. Es wird dazu (602) zu gebrauchen sein. Wir müssen noch zeigen, dass jede s-Grenze von \(p \circ \text{arch}^p \) auch s-Grenze von \(p \circ \text{arch}^p \) ist:

\[
\vdash p \circ s \rightarrow (d \circ \text{grenz}_{s}(p \circ \text{arch}^p)) \rightarrow d \circ \text{grenz}_{s}(p \circ \text{arch}^p) \quad \alpha
\]

Wir haben dazu nach (601) den Satz

\[
\vdash d \circ \text{grenz}_{s}(p \circ \text{arch}^p) \rightarrow d \circ \text{arch}^p(q \circ \text{arch}^p) \quad \beta
\]
	nöthig. Wir beweisen ihn mit dem Satz

\[
\vdash q \circ p \circ (t \circ s \leq \#p) \rightarrow q \circ (t \circ s \leq \#p) \quad \gamma
\]

der leicht aus (285) folgt.

§ 210. Aufbau.

\[
\vdash q \circ (q \circ p \circ s \circ p)
\]

(285) :

\[
\vdash q \circ p \circ (t \circ s \leq \#p) \rightarrow q \circ (t \circ s \leq \#p) \quad (628)
\]

(609) :

\[
\vdash q \circ p \circ (t \circ s \leq \#p) \rightarrow q \circ (t \circ s \leq \#p) \quad (602)
\]

\[
\vdash \neg a \circ (q \circ (t \circ s)) \rightarrow (q \circ p \circ (t \circ s \leq \#p) \rightarrow t^{-1} \circ a \circ s) \quad \alpha
\]

\[
\vdash \neg a \circ (q \circ (t \circ s)) \rightarrow \forall t[q \circ p \circ (t \circ s \leq \#p) \rightarrow t^{-1} \circ a \circ s] \quad \beta
\]

(608) :

\[
\vdash a \circ (q \circ p \circ (t \circ s)) \rightarrow a \circ (q \circ (t \circ s)) \quad (629)
\]

\[
\vdash a \circ (q \circ p \circ (t \circ s)) \rightarrow a \circ (q \circ (t \circ s)) \quad (608)
\]

\[
\vdash a \circ (q \circ p \circ (t \circ s)) \rightarrow a \circ (q \circ (t \circ s)) \quad (597)
\]

\[
\vdash d \circ \text{grenz}_{s}(q \circ p \circ (t \circ s)) \rightarrow
\]

\[
(a \circ s \rightarrow (a^{-1} \circ d \circ s \rightarrow a \circ (q \circ (t \circ s))) \quad \alpha
\]

\[
\vdash d \circ \text{grenz}_{s}(q \circ p \circ (t \circ s)) \rightarrow
\]

\[
\forall a[a \circ s \rightarrow (a^{-1} \circ d \circ s \rightarrow a \circ (q \circ (t \circ s)))] \quad \beta
\]

(590) :

\[
\vdash d \circ \text{grenz}_{s}(q \circ p \circ (t \circ s)) \rightarrow
\]

\[
\forall a[a \circ s \rightarrow (a^{-1} \circ d \circ s \rightarrow a \circ (q \circ (t \circ s)))] \quad (590)
\]
§ 211. Zerlegung.

Zum Beweise des Satzes \((\alpha)\) des § 209 haben wir nach (601) ausser dem eben bewiesenen noch den Satz

\[\vdash \text{posval}(s) \rightarrow (d \circ (\text{grenz}_s (q \circ p \circ (\text{arch}_p)))) \]

nöthig. Um ihn zu beweisen, bedürfen wir nach (594) des Satzes

\[\vdash \text{posval}(s) \rightarrow (e \circ (\text{sd}(p \circ (\text{arch}_p)))) \]

\[\vdash \text{posval}(s) \rightarrow (p \circ s \rightarrow e \circ (\text{sd}(p \circ (\text{arch}_p)))) \]

Dieser ist mit (608) aus

\[\vdash \text{posval}(s) \rightarrow (\neg a \circ (p \circ (\text{arch}_p)) \rightarrow (p \circ s \rightarrow a \circ (p \circ p \circ (\text{arch}_p)))) \]

\[\vdash \text{posval}(s) \rightarrow (t \circ p \rightarrow (t \circ p \circ (\text{arch}_p)) \rightarrow t^{-1} \circ a \circ s) \]

abzuleiten. Um \((\delta)\) zu beweisen, brauchen wir die Sätze

\[\vdash q \circ p \circ (d \circ p \circ (\text{arch}_p) \rightarrow (d \circ p \circ (a \circ p \circ (\text{arch}_p)))) \]

\[\vdash \forall \exists [q \circ p \circ (d \circ p \circ (\text{arch}_p) \rightarrow (q \circ p \circ (a \circ p \circ (\text{arch}_p))]) \]

§ 212. Aufbau.

IIIh \[\vdash d \circ p = a \rightarrow (d \circ p) \circ p = a \circ p \]

(495) :

\[\vdash d \circ (a \circ (\text{arch}_p)) \rightarrow (d \circ p) \circ p = a \circ p \] \((\alpha)\)

\[\vdash d \circ (a \circ (\text{arch}_p)) \rightarrow d \circ p \circ (a \circ p \circ (\text{arch}_p)) \] \((\beta)\)

(137) :

\[\vdash q \circ p \circ (d \circ p \circ (\text{arch}_p) \rightarrow (d \circ p \circ (a \circ p \circ (\text{arch}_p))) \]

\[\vdash \forall \exists [q \circ p \circ (d \circ p \circ (\text{arch}_p) \rightarrow (q \circ p \circ (a \circ p \circ (\text{arch}_p))]) \] \((\delta)\)
\[\vdash q \circ (t \leq_{sp} p) \rightarrow (q \circ p \circ (q \circ p \leq_{sp} p)) \]

(140) ::

\[\vdash q \circ (t \leq_{sp} p) \rightarrow q \circ p \circ (t \leq_{sp} p) \]
\[\vdash \text{posval}(s) \rightarrow (e \varnothing (s \mathcal{H}(p \varnothing (\text{arch}^p_s)))) \rightarrow (p \varnothing s \rightarrow \\
(a \varnothing s \rightarrow (a^{-1} \circ e \varnothing s \rightarrow a \varnothing (p \circ p \varnothing (\text{arch}^p_s)))))) \quad (\zeta) \]

\[\vdash \text{posval}(s) \rightarrow (e \varnothing (s \mathcal{H}(p \varnothing (\text{arch}^p_s)))) \rightarrow (p \varnothing s \rightarrow \\
\forall a [a \varnothing s \rightarrow (a^{-1} \circ e \varnothing s \rightarrow a \varnothing (p \circ p \varnothing (\text{arch}^p_s)))))) \quad (\eta) \]

(590) :

\[\vdash \text{posval}(s) \rightarrow (e \varnothing (s \mathcal{H}(p \varnothing (\text{arch}^p_s)))) \rightarrow (p \varnothing s \rightarrow \\
e \varnothing (s \mathcal{H}(p \circ p \varnothing (\text{arch}^p_s)))) \quad (\vartheta) \]

(594) :

\[\vdash \text{posval}(s) \rightarrow (e \varnothing (s \mathcal{H}(p \varnothing (\text{arch}^p_s)))) \rightarrow (p \varnothing s \rightarrow \\
e \varnothing (s \mathcal{H}(p \circ p \varnothing (\text{arch}^p_s)))) \rightarrow d \varnothing (\text{grenz}^p_s(p \varnothing (\text{arch}^p_s))))))) \quad (\iota) \]

\[\times \]

\[\vdash \text{posval}(s) \rightarrow (d \varnothing (\text{grenz}^p_s(p \varnothing (\text{arch}^p_s)))) \rightarrow (p \varnothing s \rightarrow \\
e \varnothing (s \mathcal{H}(p \varnothing (\text{arch}^p_s))))))) \quad (\kappa) \]

\[\vdash \text{posval}(s) \rightarrow (d \varnothing (\text{grenz}^p_s(p \varnothing (\text{arch}^p_s)))) \rightarrow (p \varnothing s \rightarrow \\
\forall e [e \varnothing s \rightarrow (d^{-1} \circ e \varnothing s \rightarrow e \varnothing (s \mathcal{H}(p \varnothing (\text{arch}^p_s))))))) \quad (\lambda) \]

(601) :

\[\vdash \text{posval}(s) \rightarrow (d \varnothing (\text{grenz}^p_s(p \varnothing (\text{arch}^p_s)))) \rightarrow (p \varnothing s \rightarrow \\
(d \varnothing (s \mathcal{H}(p \varnothing (\text{arch}^p_s)))) \rightarrow (d \varnothing s \rightarrow d \varnothing (\text{grenz}^p_s(p \varnothing (\text{arch}^p_s))))))) \quad (\mu) \]

(600, 630) ::

\[\vdash p \varnothing s \rightarrow (d \varnothing (\text{grenz}^p_s(p \varnothing (\text{arch}^p_s)))) \rightarrow \\
(d \varnothing s \rightarrow d \varnothing (\text{grenz}^p_s(p \varnothing (\text{arch}^p_s))))))) \quad (\nu) \]

(599) ::

\[\vdash p \varnothing s \rightarrow (d \varnothing (\text{grenz}^p_s(p \varnothing (\text{arch}^p_s)))) \rightarrow d \varnothing (\text{grenz}^p_s(p \varnothing (\text{arch}^p_s)))))) \quad (633) \]
§ 213. Zerlegung.
Mit den Sätzen (627) und (633) können wir nun den Plan des § 201 zu Ende führen und den in der Überschrift unseres Abschnittes b) angeführten Satz beweisen.

§ 214. Aufbau.
585 \(\vdash cs \to (\text{posval}(s) \to (p \circ c = c \to \neg p \circ s)) \)

(599, 602) ::

\(\vdash \text{posval}(s) \to (p \circ c \circ (\text{grenz}_s(p \circ (arch_p))) \to c \circ (\text{grenz}_s(p \circ (arch_p))) \to \neg p \circ s) \) (α)

(633, 600) ::

\(\vdash \text{posval}(s) \to (p \circ (\text{grenz}_s(p \circ (arch_p))) \to \neg p \circ s) \)

S.203

\(\vdash p \circ c \circ (\text{grenz}_s(p \circ (arch_p))) \to (c \circ (\text{grenz}_s(p \circ (arch_p))) \to \neg p \circ s) \) (β)

(627) ::

\(\vdash p \circ s \to (c \circ (\text{grenz}_s(p \circ (arch_p))) \to \neg p \circ s) \) (γ)

\(\times \)

\(\vdash p \circ s \to \neg c \circ (\text{grenz}_s(p \circ (arch_p))) \) (δ)

\(\sim \)

\(\vdash p \circ s \to \forall r \left[\neg r \circ (\text{grenz}_s(p \circ (arch_p))) \right] \) (ε)

(604) ::

\(\vdash \text{pos}(s) \to (p \circ (s \circ (p \circ (arch_p))) \to (p \circ s \to (a \circ s \to a \circ (p \circ (arch_p)))))) \) (634)

140 \(\vdash p \circ (p \circ \leq_s p) \)

(609) ::

\(\vdash \neg a \circ (p \circ (arch_p)) \to p^{-1} \circ a \circ s \) (α)

(589) ::

\(\vdash \text{posval}(s) \to (p \circ s \to (\neg a \circ (p \circ (arch_p)) \to \neg a^{-1} \circ p \circ s)) \) (β)

\(\times \)
⊢ posval(s) → (p s → (a⁻¹ • p s → a • (p • (archₚ)))))

(I):

⊢ posval(s) → (p s → (a • s → (a⁻¹ • p s → a • (p • (archₚ)))))

(δ)

⊢ posval(s) → (p s → ∀ a [a • s → (a⁻¹ • p s → a • (p • (archₚ)))])

(ε)

(590) :

⊢ posval(s) → (p s → (p e s → (a e s → (a−1 • p e s → a • (p • (archₚ))))))

(ζ)

(634) :

⊢ pos(s) → (pos(s) → (p s → (p e s → (a • s → a • (p • (archₚ))))))

(η)

(607) ::

⊢ pos(s) → (p s → (¬ a • (p • (archₚ)) → ¬ a • s))

(635)

Π

E. Beweis des Satzes

, ⊢ p s → (q s → (pos(s) → p • q = q • p))'

(Commutatives Princ in einer Positivklasse.)

a) Beweis des Satzes

, ⊢ p • q⁻¹ s → (p s → (pos(s) → (q s → q⁻¹ • p • s)))'

Wir fassen nun als Ziel das commutative Princip, zunächst innerhalb einer Positivklasse, ins Auge. Als Vorbereitung dazu beweisen wir den Satz, der in der Überschrift dieses Abschnittes a angeführt ist. Wir brauchen dazu den Satz

, ⊢ p s → (q s → (pos(s) → (q s → q⁻¹ • p • q s)))'

(α) indem wir dann ,p' durch ,p • q⁻¹' ersetzen. Zum Beweise unterscheiden wir die Fälle q⁻¹ • p s, p = q, q⁻¹ • q s, von denen die ersten beiden keine Schwierigkeiten bieten. Beim letzten Falle benutzen wir (635) indem wir zunächst den Satz

, ⊢ q s → (posval(s) → (¬ (p⁻¹ • q) • q s → (p⁻¹ • q • s) → (p • (t • ≤ₚ) → t⁻¹ • q • s)))'

(β)
mit (152) beweisen. Dazu brauchen wir den Satz

\[\vdash q \circ s \rightarrow (posval(s) \rightarrow (p^{-1} \circ q \circ s \rightarrow (\neg (p^{-1} \circ q) \circ (d^{-1} \circ q \circ s \rightarrow \\
(p \circ (d \circ s) \leq p) \rightarrow (d \circ (a \circ s \circ p) \rightarrow a^{-1} \circ q \circ s))))) \]

(\gamma)
der aus

\[\vdash q \circ s \rightarrow (posval(s) \rightarrow (p^{-1} \circ q \circ s \rightarrow (\neg (p^{-1} \circ q) \circ (d^{-1} \circ q \circ s \rightarrow \\
(d^{-1} \circ p^{-1} \circ q \circ s)))) \]

(\delta)
mit Hülfe von (500) folgt. (\delta) folgt seinerseits aus

\[\vdash p^{-1} \circ q \circ s \rightarrow (q \circ s \rightarrow (posval(s) \rightarrow (q^{-1} \circ p^{-1} \circ q \circ s \rightarrow (d^{-1} \circ q \circ s \rightarrow \\
d^{-1} \circ p^{-1} \circ q \circ s)))) \]

(\varepsilon)

§ 216. Aufbau.

508 \[\vdash f(d^{-1} \circ p^{-1} \circ q) \rightarrow f((p \circ d)^{-1} \circ q) \]

(500) :

S.205

\[\vdash p \circ (d \circ s) \leq p) \rightarrow (f(d^{-1} \circ p^{-1} \circ q) \rightarrow f((d \circ p)^{-1} \circ q)) \]

(493) :

\[\vdash d \circ (a \circ s \circ p) \rightarrow (p \circ (d \circ s) \leq p) \rightarrow \\
(f(d^{-1} \circ p^{-1} \circ q) \rightarrow f(a^{-1} \circ q)) \]

(\beta)

\[\vdash (d^{-1} \circ q) \circ q^{-1} \circ p^{-1} \circ q \circ s \rightarrow d^{-1} \circ q \circ q^{-1} \circ p^{-1} \circ q \circ s \]

(491)

(567) :

\[\vdash p^{-1} \circ q \circ s \rightarrow (posval(s) \rightarrow (q \circ s \rightarrow \\
((d^{-1} \circ q) \circ q^{-1} \circ p^{-1} \circ q \circ s \rightarrow d^{-1} \circ p^{-1} \circ q \circ s))))) \]

(\gamma)

(529) :: \vdash p^{-1} \circ q \circ s \rightarrow (q \circ s \rightarrow (posval(s) \rightarrow \\
(q^{-1} \circ p^{-1} \circ q \circ s \rightarrow (d^{-1} \circ q \circ s \rightarrow d^{-1} \circ p^{-1} \circ q \circ s))))) \]

(588) ::

\[\vdash q \circ s \rightarrow (\neg q = p^{-1} \circ q \rightarrow (posval(s) \rightarrow (p^{-1} \circ q \circ s \rightarrow \\
(\neg (p^{-1} \circ q) \circ q \circ s \rightarrow (d^{-1} \circ q \circ s \rightarrow d^{-1} \circ p^{-1} \circ q \circ s))))) \]

(\varepsilon)

(IIIc) :

⊢ q s → (posval (s) → (p⁻¹ ⨿ q s →
\neg (p⁻¹ ⨿ q)^{-1} ⨿ q s → (d⁻¹ ⨿ q s → d⁻¹ ⨿ p⁻¹ ⨿ q s))))
(ζ)

(β):

ठ ⊢ q s → (posval (s) → (p⁻¹ ⨿ q s → (\neg (p⁻¹ ⨿ q)^{-1} ⨿ q s →
(d⁻¹ ⨿ q s → (p ⨿ (d ⨿ \leq_{*} p) →
(d ⨿ (a ⨿ₚ p) → a⁻¹ ⨿ q s))))))
(η)

\sim

⊢ q s → (posval (s) → (p⁻¹ ⨿ q s → (\neg (p⁻¹ ⨿ q)^{-1} ⨿ q s →
\forall d (d ⨿ \leq_{*} p) →
\forall a (d ⨿ₚ (a ⨿ p) → a⁻¹ ⨿ q s))))
(ϑ)

(152):

⊢ q s → (posval (s) → (\neg (p⁻¹ ⨿ q)^{-1} ⨿ q s → (p⁻¹ ⨿ q s →
(p ⨿ (t ⨿ \leq_{*} p) → t⁻¹ ⨿ q s))))
(τ)

\sim

⊢ q s → (posval (s) → (\neg (p⁻¹ ⨿ q)^{-1} ⨿ q s → (p⁻¹ ⨿ q s →
\forall t [p ⨿ (t ⨿ \leq_{*} p) → t⁻¹ ⨿ q s]])
(κ)

(608):

⊢ q s → (posval (s) → (\neg (p⁻¹ ⨿ q)^{-1} ⨿ q s →
(p⁻¹ ⨿ q s → \neg q ⨿ (p ⨿ (archₚ))))))
(λ)

×

S.206

⊢ q s → (posval (s) → (q ⨿ (p ⨿ (archₚ))) → (p⁻¹ ⨿ q s →
(p⁻¹ ⨿ q)^{-1} ⨿ q s)))
(μ)

(635) ::
\(\vdash \text{posval}(s) \rightarrow (\text{pos}(s) \rightarrow (p \circ q \rightarrow (q \circ s \rightarrow (p^{-1} \circ q \circ s \rightarrow (p^{-1} \circ q^{-1} \circ q \circ s)))))) \) (\(\nu \))

(542) :

\[\vdash \text{posval}(s) \rightarrow (\text{pos}(s) \rightarrow (p \circ q \rightarrow (q \circ s \rightarrow (p^{-1} \circ q \circ s \rightarrow (q^{-1} \circ p \circ q \circ s)))))) \]

(588) :

\[\vdash \text{pos}(s) \rightarrow (p \circ q \rightarrow (q^{-1} \circ p) \circ q \circ s) \]

(\(\xi \))

IIIa \[\vdash p = q \rightarrow ((q^{-1} \circ q) \circ q \circ s \rightarrow (q^{-1} \circ p) \circ q \circ s) \]

(637) :

\[\vdash \text{posval}(s) \rightarrow (\text{pos}(s) \rightarrow (q \circ s \rightarrow (q^{-1} \circ p) \circ q \circ s) \rightarrow (q^{-1} \circ q \circ s \rightarrow (p^{-1} \circ q^{-1} \circ q \circ s))) \] (\(\sigma \))

(607) :

\[\vdash p \circ q \rightarrow (\text{pos}(s) \rightarrow (q \circ s \rightarrow (q^{-1} \circ p) \circ q \circ s)) \] (\(\tau \))

575 \[\vdash q \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (q^{-1} \circ q \circ s \rightarrow (q^{-1} \circ p \circ q \circ s)))))) \]

(637, 607) :

\[\vdash p \circ q^{-1} \circ q \circ s \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (q^{-1} \circ p \circ q \circ s)) \]

S.207

b) Beweis des Satzes

, \[\vdash p^{-1} \circ q \circ s \rightarrow (p \circ s \rightarrow (\text{pos}(s) \rightarrow (q \circ s \rightarrow q \circ p^{-1} \circ s)))) \]

\(\S \ 217. \) Zerlegung.

Satzes

\[\vdash p \circ s \rightarrow (\text{pos} (s) \rightarrow (q \circ s \rightarrow q \circ p \circ q^{-1} \circ s)) \]

Wenn wir diesen ähnlich wie (637) beweisen wollten, müssten wir auch einen ähnlichen Übergang wie von (δ) zu (ε) (§ 216) machen und dazu bedürfen wir eines Satzes wie

\[\vdash p \circ s \rightarrow (\neg p = q \rightarrow (\text{posval} (s) \rightarrow (q \circ s \rightarrow (\neg p \circ q^{-1} \circ s \rightarrow q \circ p \circ q^{-1} \circ s)))) \]

(α der mit (526) ähnlich abzuleiten wäre wie (588) mit (528). Bisher haben wir von (526) keinen Gebrauch gemacht, um zu versuchen, ob ohne ihn auszukommen sei. Wäre dies durchführbar, so könnten wir die siebente Zeile auf der linken Seite der Definitionsgleichung (Ψ) streichen.

Aber hier ist die Stelle, wo sich ihre Unentbehrlichkeit zeigt. Wenigstens sind alle Versuche, ohne den Satz (526) fertig zu werden, immer an denselben Hindernissen gescheitert, dass wir nämlich von \(\neg B \circ \Sigma \circ A^{-1} \) nicht zu \(A \circ \Sigma \circ B^{-1} \) gelangen können, wenn das Zusammenfallen von A und B ausgeschlossen ist.

Nachdem wir uns einmal zur Anwendung von (526) entschlossen haben, können wir unseren Beweis kürzer mit (638) führen, indem wir zeigen, dass weder \(p \circ q^{-1} \circ q \rightarrow (p \circ q^{-1}) \circ q = (q^{-1} \circ q) \circ q \)

\[(575) : \]

\[\vdash q \circ s \rightarrow (\text{posval} (s) \rightarrow (p \circ s \rightarrow (q^{-1} \circ q \rightarrow p = (q^{-1} \circ q) \circ q))) \]

(α)

\[(564) : \]

\[\vdash q \circ s \rightarrow (\text{posval} (s) \rightarrow (p \circ s \rightarrow (q^{-1} \circ q \rightarrow p = q))) \]

(β)

\[(561) : \]

\[S.208 \]

\[\vdash p \circ s \rightarrow (p \circ q^{-1} \circ s \circ \delta s \rightarrow (\neg (p \circ q^{-1})^{-1} \circ s \rightarrow (\text{posval} (s) \rightarrow (q \circ s \rightarrow \neg p \circ q^{-1} \circ s \rightarrow p = q)))) \]

(γ)

\[(526) : \]

\[\vdash p \circ s \rightarrow (\neg (p \circ q^{-1})^{-1} \circ s \rightarrow (\text{posval} (s) \rightarrow (q \circ s \rightarrow \neg p \circ q^{-1} \circ s \rightarrow p = q))) \]

(δ)

\[(544) : \]
$\vdash p \circ s \rightarrow (\neg q \circ p^{-1} \circ s \rightarrow (\text{posval} (s) \rightarrow (q \circ s \rightarrow (\neg p \circ q^{-1} \circ s \rightarrow p = q))))$

(639)

\times

$\vdash p \circ s \rightarrow (\neg p = q \rightarrow (\text{posval} (s) \rightarrow (q \circ s \rightarrow (\neg p \circ q^{-1} \circ s \rightarrow q \circ p^{-1} \circ s))))$

(640)

IIIc

$\vdash p = q \rightarrow (\neg p^{-1} \circ p \circ s \rightarrow \neg p^{-1} \circ q \circ s)$

(536) :: ------------

$\vdash p = q \rightarrow (\text{posval} (s) \rightarrow (p \circ s \rightarrow \neg p^{-1} \circ q \circ s))$

(\alpha)

$\vdash p = q \rightarrow (\text{posval} (s) \rightarrow (p \circ s \rightarrow (p^{-1} \circ q \circ s \rightarrow q \circ p^{-1} \circ s)))$

(\beta)

(589) $\vdash \text{posval} (s) \rightarrow (q \circ s \rightarrow (q^{-1} \circ p \circ s \rightarrow \neg p^{-1} \circ q \circ s))$

(638) :: ------------

$\vdash \text{posval} (s) \rightarrow (p \circ q^{-1} \circ s \rightarrow (p \circ s \rightarrow (\text{pos} (s) \rightarrow (q \circ s \rightarrow \neg p^{-1} \circ q \circ s))))$

(\gamma)

\times

$\vdash \text{posval} (s) \rightarrow (p^{-1} \circ q \circ s \rightarrow (p \circ s \rightarrow (\text{pos} (s) \rightarrow (q \circ s \rightarrow \neg p \circ q^{-1} \circ s))))$

(\delta)

(640) :: ------------

$\vdash \neg p = q \rightarrow (\text{posval} (s) \rightarrow (p^{-1} \circ q \circ s \rightarrow (p \circ s \rightarrow (\text{pos} (s) \rightarrow (q \circ s \rightarrow q \circ p^{-1} \circ s))))))$

(\epsilon)

(\beta) :: ------------

$\vdash \text{posval} (s) \rightarrow (p^{-1} \circ q \circ s \rightarrow (p \circ s \rightarrow (\text{pos} (s) \rightarrow (q \circ s \rightarrow q \circ p^{-1} \circ s))))$

(\zeta)

(607) :: ------------

S.209

$\vdash p^{-1} \circ q \circ s \rightarrow (p \circ s \rightarrow (\text{pos} (s) \rightarrow (q \circ s \rightarrow q \circ p^{-1} \circ s))))$

(641)
c) Beweis des Satzes

\[
\Gamma \vdash c \circ s \rightarrow (d \circ s \rightarrow \\
(\forall a \circ s \rightarrow \neg ((c^{-1} \circ d) \circ a \circ s \rightarrow \neg (d^{-1} \circ c) \circ a \circ s)) \rightarrow \\
(posval(s) \rightarrow c = d))
\]

Zum Beweise des commutativen Princips brauchen wir den in der Ueberschrift angeführten Satz, der in Worten genau nur schwerfällig wiedergegeben ist. Zur Erleichterung des Verständnisses mag folgende freie Übersetzung erlaubt sein:

„Wenn in einem Grössengebiete die beiden Differenzen \((c^{-1} \circ d)\) und \((d^{-1} \circ c)\) der positiven Grössen \(c\) und \(d\) kleiner sind als jede positive Grösse, so fallen die Grössen \(c\) und \(d\) zusammen."

Wir führen diesen Satz auf folgenden zurück:

\[
\Gamma \vdash b \circ s \rightarrow (p \circ s \rightarrow (\forall a \circ s \rightarrow \neg ((b^{-1} \circ a \circ s \rightarrow \neg b \circ a \circ s)) \rightarrow \\
(posval(s) \rightarrow b = p^{-1} \circ p))
\]

den wir in Worten ebenfalls frei sowiedergeben:

„Eine Grösse \(b\) ist eine Nullgrösse, wenn sowohl sie selbst als auch ihre Umkehrung \(b^{-1}\) mit jeder positiven Grösse desselben Gebietes zusammengesetzt eine positive Grösse ergiebt."

Ich nenne hierbei zur Abkürzung positive Grössen eine Relation, die der Positivalklasse \((s)\) angehört. Der Beweis ist mit (516) zu führen. Man zeigt, dass \(b\) weder positiv noch die Umkehrung einer Relation \((q)\) sein kann, die positiv ist. Im ersten Falle ist \(b^{-1} \circ b\), im zweiten \(b \circ q\) nicht positiv.

§ 220. Aufbau.

\[
536 \vdash posval(s) \rightarrow (q \circ s \rightarrow \neg q^{-1} \circ q \circ s)
\]

(III\(d\)):

\[
\Gamma \vdash posval(s) \rightarrow (q \circ s \rightarrow (b \circ q \circ s \rightarrow \neg b = q^{-1}))
\]

(\(I\)\(f\)):

S.210

\[
\Gamma \vdash posval(s) \rightarrow (q \circ s \rightarrow (b \circ q \circ s \rightarrow \\
(\neg b = q^{-1} \circ q \rightarrow \neg (\neg b = q^{-1} \rightarrow b = q^{-1} \circ q)))
\]

\(β\)
\[\vdash p \vDash s \rightarrow (\text{posval}(s) \rightarrow (q \vDash s \rightarrow (b \circ q \vDash s \rightarrow (\neg b = p^{-1} \circ p \rightarrow \neg (\neg b = q^{-1} \rightarrow b \equiv q^{-1} \circ q)))))) \] (\gamma)

(IIb) ::
\[\vdash p \vDash s \rightarrow (\text{posval}(s) \rightarrow (q \vDash s \rightarrow (\neg (b^{-1} \circ q \vDash s \rightarrow b \circ q \vDash s) \rightarrow (\neg b = p^{-1} \circ p \rightarrow \neg (\neg b = q^{-1} \rightarrow b \equiv q^{-1} \circ q)))))) \] (\delta)

(IIa) ::
\[\vdash p \vDash s \rightarrow (\text{posval}(s) \rightarrow (\forall a [a \vDash s \rightarrow \neg (b^{-1} \circ a \vDash s \rightarrow b \circ a \vDash s)] \rightarrow (\neg b = p^{-1} \circ p \rightarrow (q \vDash s \rightarrow \neg (\neg b = q^{-1} \rightarrow b \equiv q^{-1} \circ q)))))) \] (\varepsilon)

\[\vdash p \vDash s \rightarrow (\text{posval}(s) \rightarrow (\forall a [a \vDash s \rightarrow \neg (b^{-1} \circ a \vDash s \rightarrow b \circ a \vDash s)] \rightarrow (\neg b = p^{-1} \circ p \rightarrow \forall q [q \vDash s \rightarrow \neg (\neg b = q^{-1} \rightarrow b \equiv q^{-1} \circ q)]))) \] (\zeta)

(516) :
\[\vdash b \vDash \delta s \rightarrow (p \vDash s \rightarrow (\text{posval}(s) \rightarrow (\forall a [a \vDash s \rightarrow \neg (b^{-1} \circ a \vDash s \rightarrow b \circ a \vDash s)] \rightarrow (\neg b = p^{-1} \circ p \rightarrow b \vDash s))))) \] (\eta)

\[\times\]
\[\vdash b \vDash \delta s \rightarrow (p \vDash s \rightarrow (\text{posval}(s) \rightarrow (\forall a [a \vDash s \rightarrow \neg (b^{-1} \circ a \vDash s \rightarrow b \circ a \vDash s)] \rightarrow (\neg b \vDash s \rightarrow b = p^{-1} \circ p)))))) \] (\iota)

536 \[\vdash \text{posval}(s) \rightarrow (b \vDash s \rightarrow \neg b^{-1} \circ b \vDash s)\]

\[\times\]
\[\vdash b^{-1} \circ b \vDash s \rightarrow (b \vDash s \rightarrow \neg \text{posval}(s)) \] (Id) ::
\[\vdash \neg (b^{-1} \circ b \circ s \rightarrow \neg b \circ b \circ s) \rightarrow (b \circ s \rightarrow \neg \text{posval}(s)) \quad (\kappa) \]

\((II a) \therefore \quad \vdash \forall a \ [a \circ s \rightarrow \neg (b^{-1} \circ a \circ s \rightarrow \neg b \circ a \circ s)] \rightarrow (b \circ s \rightarrow \neg \text{posval}(s)) \quad (\lambda) \]

\[\vdash \forall a \ [a \circ s \rightarrow \neg (b^{-1} \circ a \circ s \rightarrow \neg b \circ a \circ s)] \rightarrow (\text{posval}(s) \rightarrow \neg b \circ s) \quad (\mu) \]

\((\nu) : \quad \vdash b \circ s \rightarrow (p \circ s \rightarrow)
\]

\[(\forall a \ [a \circ s \rightarrow \neg (b^{-1} \circ a \circ s \rightarrow \neg b \circ a \circ s)] \rightarrow
\]

\[(\text{posval}(s) \rightarrow b = p^{-1} \circ p))) \quad (642) \]

\[\mid \exists \ [d^{-1} \circ c = d^{-1} \circ d \rightarrow d \circ d^{-1} \circ c = d \circ d^{-1} \circ d \]

\[(642) : \quad \vdash \text{posval}(s) \rightarrow (d \circ s \rightarrow (d^{-1} \circ c = d^{-1} \circ d \rightarrow d \circ d^{-1} \circ c = d)) \quad (\alpha) \]

\[\mid \exists \ [c \circ s \rightarrow (\text{posval}(s) \rightarrow (d \circ s \rightarrow (d^{-1} \circ c = d^{-1} \circ d \rightarrow c = d))) \quad (643) \]

\[(642) : \quad \vdash c \circ s \rightarrow (d^{-1} \circ c \circ s \rightarrow (d \circ s \rightarrow)
\]

\[(\forall a \ [a \circ s \rightarrow \neg ((d^{-1} \circ c) \circ a \circ s \rightarrow \neg (d^{-1} \circ c) \circ a \circ s)] \rightarrow
\]

\[(\text{posval}(s) \rightarrow c = d))) \quad (\alpha) \]

\[(543, 528) : \quad \vdash c \circ s \rightarrow (d \circ s \rightarrow)
\]

\[(\forall a \ [a \circ s \rightarrow \neg ((c^{-1} \circ d) \circ a \circ s \rightarrow \neg (d^{-1} \circ c) \circ a \circ s)] \rightarrow
\]

\[(\text{posval}(s) \rightarrow c = d))) \quad (644) \]

d) Beweis des Satzes

\[\vdash b^{-1} \circ p \circ s \rightarrow (\text{pos}(s) \rightarrow
\]

\[(p \circ s \rightarrow (q \circ s \rightarrow (b^{-1} \circ q \circ s \rightarrow (\text{posval}(s) \rightarrow
\]

\[(b \circ s \rightarrow (q \circ p)^{-1} \circ (p \circ q) \circ b \circ s))))))) \]

§ 221. Zerlegung.

Mit (644) beweisen wir nun das commutative Gesetz, indem wir für \(d' \), \(q \circ p'\) und für \(c'\), \(p \circ q'\) setzen. Wir schließen \(q \circ p\) und \(p \circ q\) zwischen denselben Grenzen ein, die wir dann beliebig einander nähern.
Zu diesem Zwecke nehmen wir eine positive Größe b an, (vergl. § 219), die kleiner als p und kleiner als q ist. Es gibt nun nach (635) ein Vielfaches von b, das nicht kleiner ist als p. Folglich gibt es auch nach (357)eineso, das zuerst nicht kleiner ist als p und das diesem unmittelbar vorhergehende c ist kleiner als p. So kann man p zwischen zwei Grössen c und o einschliessen, die um b verschieden sind. Ebenso kann man q zwischen den Grössen d und a einschliessen, die um b verschieden sind. Es wird also c kleiner als p und o nicht kleiner sein als p. Ebenso wird d kleiner und a nicht kleiner sein als q. Es fällt dabei $c \circ b$ mit o und $d \circ b$ mit a zusammen. Wir bedürfen dazu des Satzes

\[\vdash d^{-1} \circ q \circ s \rightarrow (d \circ s \rightarrow (c^{-1} \circ p \circ s \rightarrow (c \circ s \rightarrow (\text{pos} (s) \rightarrow (q \circ s \rightarrow (p \circ q) \circ (c \circ d)^{-1} \circ s))) \)). \]

(a)

→Denselben Inhalt schreiben wir mit andern Buchstaben so, dass das Hinterglied wird:

\[\vdash (a \circ o) \circ (q \circ p)^{-1} \circ s \). \]

→Aus beiden Formen erhalten wir nach (529) einen Satz mit dem Hintergliede:

\[\vdash ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (q \circ p)^{-1} \circ s \). \]

Dieses verwandeln wir dann mit dem schon bewiesenen commutativen Gesetz (502) für Vielfache derselben Größe in

\[\vdash ((p \circ q) \circ b \circ b) \circ (q \circ p)^{-1} \circ s \),\]

das dann mit (638) weiter in

\[\vdash (p \circ q) \circ b \circ b \circ s \cdot\]

umgesetzt werden kann. In dem so gewonnenen Satze vertauschen wir „p“ mit „q“. Es bleibt dann noch zu zeigen, dass b so gewählt werden kann, dass $b \circ b$ nicht grösser als eine beliebige kleine positive Größe ist. Dann können wir (644) anwenden.

Wir leiten zunächst (a) aus den beiden Sätzen

\[\vdash d^{-1} \circ q \circ s \rightarrow (d \circ s \rightarrow (\text{pos} (s) \rightarrow (q \circ s \rightarrow (c \circ s \rightarrow (c \circ q) \circ (c \circ d)^{-1} \circ s))) \)). \]

(β)

\[\vdash c^{-1} \circ p \circ s \rightarrow (c \circ s \rightarrow (\text{pos} (s) \rightarrow (q \circ s \rightarrow (p \circ s \rightarrow (p \circ q) \circ (c \circ q)^{-1} \circ s))) \)). \]

(γ)

ab, die mit (641) zu beweisen sind.

§ 222. Aufbau.

508	$\vdash d^{-1} \circ c^{-1} \circ c \circ q \circ s \rightarrow (c \circ d)^{-1} \circ c \circ q \circ s$		
508	(569)	$\vdash q \circ s \rightarrow (\text{pos} (s) \rightarrow (c \circ s \rightarrow ((d^{-1} \circ q \circ s \rightarrow (c \circ d)^{-1} \circ c \circ q \circ s)))$	(α)
641	$\vdash c \circ d \circ q \circ s \circ (c \circ q \circ s)$		

89Denselben Inhalt schreiben wir mit andern Buchstaben so, dass das Oberglied wird
90Aus beiden Formen erhalten wir nach (529) einen Satz mit dem Obergliede
#34Textkorrektur infolge modernisierter Formelnotation!
#35Textkorrektur infolge modernisierter Formelnotation!
\[\vdash q \varphi s \rightarrow (\text{posval}(s) \rightarrow (c \varphi s \rightarrow (d^{-1} \circ q \varphi s \rightarrow (c \circ d \varphi s \rightarrow (p \circ q \varphi s \rightarrow (c \circ q \varphi s \rightarrow (c \circ q \varphi s \rightarrow (c \circ d^{-1} \varphi s)))))) \]
§ 223. Zerlegung.

Wie wir uns im § 221 vorgenommen haben, setzen wir nun in (648) für ,d,' ,p', für ,c', ,q' für ,q', ,o' und für ,p', ,a' ein. Wir erhalten dann darin die Vorderglieder - o l o s' und ,− q' zu beweisen ist. Für diese sind ,− o' → p o s', ,− p' = o', ,− a' → q o s', ,− q = a' einzuführen, weil o das erste Vielfache von b sein soll, das nicht kleiner als p ist, und a das erste, das nicht kleiner als q ist. Statt ,− p = o' und ,− q = a' → wird man das Vorderglied → q = a → ¬ p = o' hineinbringen können.

Nach (529) haben wir

\[\vdash \text{posval}(s) \rightarrow ((a \circ o) \circ (q \circ p)^{-1} \circ s \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1} \circ s \rightarrow \left((p \circ q) \circ d^{-1} \circ c^{-1}\right) \circ (a \circ o) \circ (q \circ p)^{-1} \circ s)) \]

S.215 Hier wird für das vorletzte Vorderglied → q = a → ¬ p = o' einzuführen sein. Um, wie oben gesagt, das Vorderglied → q = a → ¬ p = o' statt ,− p = o' und ,− q = a' → den Satz mit dem Hinterglied → ,−(a \circ o) \circ (q \circ p)^{-1} \circ s' hineinbringen, brauchen wir Sätze mit diesem Hinterglied und theils mit den Vordergliedern → q = a → ¬ p = o' von denen der erste aus (645), der zweite aus (647) folgt. Zur oben angegebenen Umformung von (529) brauchen wir den Satz

\[\vdash a \circ o \circ s \rightarrow (\text{posval}(s) \rightarrow (\neg (q = a \rightarrow \neg p = o) \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1} \circ s \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1} \circ (a \circ o) \circ (q \circ p)^{-1} \circ s))) \) (\alpha) \]

\[\text{der mit (581) zu beweisen ist.} \]

§ 224. Aufbau.

\[\vdash p^{-1} \circ o \circ s \rightarrow (p \circ s \rightarrow (q^{-1} \circ a \circ s \rightarrow (q \circ s \rightarrow (\text{posval}(s) \rightarrow (a \circ s \rightarrow (a \circ s \rightarrow (a \circ o) \circ (q \circ p)^{-1} \circ s))) \))) \]

(588, 588) : = = = = = = = = = =

\[\vdash \neg p = a \rightarrow (\neg a^{-1} \circ p \circ s \rightarrow (p \circ s \rightarrow (\neg q = a) \rightarrow (\neg a^{-1} \circ q \circ s \rightarrow (q \circ s \rightarrow (\text{posval}(s) \rightarrow (a \circ s \rightarrow (a \circ o) \circ (q \circ p)^{-1} \circ s))) \))) \)

\[(\alpha) \]

91 Wir erhalten dann darin die Unterglieder
92 wird man das Unterglied
93 Hier wird für das vorletzte Unterglied
94 Um, wie oben gesagt, das Unterglied
95 in den Satz mit dem Obergliede
96 brauchen wir Sätze mit diesem Obergliede und theils mit den Untergliedern
97 theils mit den Untergliedern
98 Textkorrektur infolge modernisierter Formelsymbolik!
99 Textkorrektur infolge modernisierter Formelsymbolik!
100 Textkorrektur infolge modernisierter Formelsymbolik!
101 Textkorrektur infolge modernisierter Formelsymbolik!
\(\Gamma \vdash q = a \rightarrow ((a \circ o) \circ (a \circ p)^{-1} \circ s \rightarrow (a \circ o) \circ (q \circ p)^{-1} \circ s) \)

(645) ::

\(\Gamma \vdash q = a \rightarrow (p^{-1} \circ a \circ s \rightarrow (p \circ s \rightarrow (\text{pos} \circ s) \rightarrow (\text{posval} \circ s \rightarrow (a \circ s \rightarrow (a \circ o) \circ (q \circ p)^{-1} \circ s)))) \)

(\(\beta \))

(588) ::

\(\Gamma \vdash q = a \rightarrow (\neg s = o \rightarrow (\neg o^{-1} \circ p \circ s \rightarrow (p \circ s \rightarrow (\text{pos} \circ s) \rightarrow (\text{posval} \circ s \rightarrow (a \circ s \rightarrow (a \circ o) \circ (q \circ p)^{-1} \circ s)))))) \)

(\(\gamma \))

\((I) :: \)

S.216

\(\Gamma \vdash (q = a \rightarrow \neg s = o) \rightarrow (q = a \rightarrow (\neg o^{-1} \circ p \circ s \rightarrow (p \circ s \rightarrow (\text{pos} \circ s) \rightarrow (\text{posval} \circ s \rightarrow (a \circ s \rightarrow (a \circ o) \circ (q \circ p)^{-1} \circ s)))))) \)

(\(\delta \))

\(IIIa:: \)

\(\vdash p = o \rightarrow ((a \circ o) \circ (q \circ o)^{-1} \circ s \rightarrow (a \circ o) \circ (q \circ p)^{-1} \circ s) \)

(647) ::

\(\vdash p = o \rightarrow (q^{-1} \circ a \circ s \rightarrow (q \circ s \rightarrow (\text{pos} \circ s) \rightarrow (\text{posval} \circ s \rightarrow (a \circ s \rightarrow (a \circ o) \circ (q \circ p)^{-1} \circ s)))) \)

(\(\varepsilon \))

(588) ::

\(\vdash p = o \rightarrow (\neg s = a \rightarrow (\neg a^{-1} \circ q \circ s \rightarrow (q \circ s \rightarrow (\text{pos} \circ s) \rightarrow (\text{posval} \circ s \rightarrow (a \circ s \rightarrow (a \circ o) \circ (q \circ p)^{-1} \circ s)))))) \)

(\(\zeta \))

\((\alpha): \)

\(\vdash \neg o^{-1} \circ p \circ s \rightarrow (p \circ s \rightarrow (\neg s = a \rightarrow (\neg a^{-1} \circ q \circ s \rightarrow (q \circ s \rightarrow (\text{pos} \circ s) \rightarrow (\text{posval} \circ s \rightarrow (a \circ s \rightarrow (a \circ o) \circ (q \circ p)^{-1} \circ s)))))) \)

(\(\eta \))

\((\delta): \)

\(\vdash \neg o^{-1} \circ p \circ s \rightarrow (p \circ s \rightarrow (\neg a^{-1} \circ q \circ s \rightarrow (q \circ s \rightarrow (\text{pos} \circ s) \rightarrow (\text{posval} \circ s \rightarrow (a \circ s \rightarrow (a \circ o) \circ (q \circ p)^{-1} \circ s)))))) \)

(650)

S.217

\(\vdash \text{posval} \circ s \rightarrow ((a \circ o) \circ (q \circ o)^{-1} \circ s \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1} \circ s \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (q \circ p)^{-1} \circ s)) \)

(\(I:: \)

\((I): \)

((q = a \rightarrow \neg p = o) \rightarrow \neg \alpha) \)
IIIa \[\vdash p = o \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (a \circ o)^{-1} \circ s \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (a \circ p)^{-1} \circ s)\]

(IIIa):

\[\vdash q = a \rightarrow (p = o \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (a \circ o)^{-1} \circ s \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (q \circ p)^{-1} \circ s))\] (3)

(Ib, Id)::

\[\vdash \neg (q = a \rightarrow \neg p = o \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (a \circ o)^{-1} \circ s \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (q \circ p)^{-1} \circ s))\] (γ)

(581):

\[\vdash a \circ o \circ s \rightarrow (pos\;val\;s) \rightarrow (\neg (q = a \rightarrow \neg p = o \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (q \circ p)^{-1} \circ s))\] (δ)

(529)::

\[\vdash o \circ s \rightarrow (a \circ s) \rightarrow (pos\;val\;s) \rightarrow (\neg (q = a \rightarrow \neg p = o \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (q \circ p)^{-1} \circ s)))\] (ε)

(a)::

\[\vdash ((q = a \rightarrow \neg p = o) \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (q \circ p)^{-1} \circ s) \rightarrow (a \circ s) \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (q \circ p)^{-1} \circ s))\] (ζ)

(649, 650)::

\[\vdash \neg a^{-1} \circ p \circ s \rightarrow (\neg a^{-1} \circ q \circ s) \rightarrow (a \circ s) \rightarrow (a \circ s) \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (q \circ p)^{-1} \circ s))\] (η)

(623, 623)::

\[\vdash \neg a^{-1} \circ p \circ s \rightarrow (\neg a^{-1} \circ q \circ s) \rightarrow (b \circ (a \circ s) \leq_{sb} b) \rightarrow (b \circ (a \circ s) \leq_{sb} b) \rightarrow (b \circ (a \circ s) \leq_{sb} b) \rightarrow ((p \circ q) \circ d^{-1} \circ c^{-1}) \circ (a \circ o) \circ (q \circ p)^{-1} \circ s))\] (651)

S.218

§ 225. Zerlegung.
Gemäß unseres Plans, des § 221, beweisen wir nun den Satz

\[
\vdash b \triangleright (a \triangleright \leq b) \rightarrow (d \triangleright (a \triangleright b) \rightarrow (b \triangleright (a \triangleright \leq b)) \rightarrow (b \triangleright (posval (s) \rightarrow (c \triangleright (a \triangleright b) \rightarrow b \circ b = (d^{-1} \circ c^{-1}) \circ a \circ a)))))
\]

den wir aus dem Satz

\[
\vdash b \triangleright (posval (s) \rightarrow (c \triangleright (a \circ b = a \rightarrow b = c^{-1} \circ a)))
\]

und (502) ableiten. (\(\beta \)) folgt aus (570).

§ 226. Aufbau.

IIIh \[\vdash c \circ b = a \rightarrow c^{-1} \circ c \circ b = c^{-1} \circ o \] (570) :

\[
\vdash b \triangleright (posval (s) \rightarrow (c \triangleright (a \circ b = a \rightarrow b = c^{-1} \circ a)))
\] (652)

(492) :: \[
\vdash b \triangleright (posval (s) \rightarrow (c \triangleright (a \circ b = a \rightarrow b = c^{-1} \circ a)))
\] (653)

(IIIa) : \[
\vdash b \triangleright (posval (s) \rightarrow (c \triangleright (a \circ b = a \rightarrow b = c^{-1} \circ a)))
\] (654)

\[
\vdash (c^{-1} \circ o) \circ a = c^{-1} \circ o \circ o \circ a
\] (IIIh) :

\[
\vdash d^{-1} \circ (c^{-1} \circ o) \circ a = d^{-1} \circ c^{-1} \circ o \circ o \circ a
\] (\(\alpha \))

(490) :

\[
\vdash d^{-1} \circ (c^{-1} \circ o) \circ a = (d^{-1} \circ c^{-1}) \circ o \circ o \circ a
\] (\(\beta \))

(654) :

\[
\vdash b \triangleright (posval (s) \rightarrow (c \triangleright (a \circ b = a \rightarrow b = c^{-1} \circ o \circ a)))
\] (\(\gamma \))

(500) :

\[
\vdash b \triangleright (a \triangleright \leq b) \rightarrow (b \triangleright (posval (s) \rightarrow (c \triangleright (a \circ b = a \rightarrow b = c^{-1} \circ o \circ a)))
\] (\(\delta \))

(490) :

\[
\vdash b \triangleright (a \triangleright \leq b) \rightarrow (b \triangleright (posval (s) \rightarrow (c \triangleright (a \circ b = a \rightarrow b = c^{-1} \circ o \circ a)))
\] (\(\varepsilon \))

(654) :

\[
\vdash d \triangleright (a \circ b = a \rightarrow b \circ (a \circ b = a \rightarrow b \circ (c \triangleright (a \circ b = a \rightarrow b = (d^{-1} \circ c^{-1}) \circ o \circ a))))
\] (\(\zeta \))

(502) ::
\[\vdash b \varnothing (a \varnothing \leq_{sb} b) \rightarrow (d \varnothing s \rightarrow (d \varnothing (a \varnothing s b) \rightarrow (b \varnothing (a \varnothing \leq_{sb} b) \rightarrow (b \varnothing s \rightarrow (\text{posval}(s) \rightarrow (c \varnothing s \rightarrow (c \varnothing (o \varnothing s b) \rightarrow b o b) = (d^{-1} \circ c^{-1}) \circ a o a)))})) \]

\((\eta)\)

\[(IIIa): \quad \vdash b \varnothing (a \varnothing \leq_{sb} b) \rightarrow (d \varnothing s \rightarrow (d \varnothing (a \varnothing s b) \rightarrow (b \varnothing (a \varnothing \leq_{sb} b) \rightarrow (b \varnothing s \rightarrow (\text{posval}(s) \rightarrow (c \varnothing s \rightarrow (c \varnothing (o \varnothing s b) \rightarrow (((p o q) \circ (d^{-1} \circ c^{-1}) \circ a o a) \circ (q o p)^{-1} \varnothing s \rightarrow

\(((p o q) o b o b) o (q o p)^{-1} \varnothing s)))))))) \]

\((\vartheta)\)

\[490 \quad \vdash ((p o q) o d^{-1} \circ c^{-1}) o (a o a) o (q o p)^{-1} \varnothing s \rightarrow

\[((p o q) o d^{-1} \circ c^{-1}) o (a o a) o (q o p)^{-1} \varnothing s \]

\[(491): \quad \vdash ((p o q) o d^{-1} \circ c^{-1}) o (a o a) o (q o p)^{-1} \varnothing s \rightarrow

\[((p o q) o (d^{-1} \circ c^{-1}) o a o a) o (q o p)^{-1} \varnothing s \]

\((\iota)\)

\[S.221 \]

\[\vdash b \varnothing (o \varnothing \leq_{sb} b) \rightarrow (d \varnothing s \rightarrow (d \varnothing (a \varnothing s b) \rightarrow (b \varnothing (a \varnothing \leq_{sb} b) \rightarrow (b \varnothing s \rightarrow (\text{posval}(s) \rightarrow (c \varnothing s \rightarrow (c \varnothing (o \varnothing s b) \rightarrow (((p o q) o d^{-1} \circ c^{-1}) \circ a o a) \circ (q o p)^{-1} \varnothing s \rightarrow

\(((p o q) o b o b) o (q o p)^{-1} \varnothing s)))))))) \]

\((\kappa)\)

\[(651) :: \quad \vdash d \varnothing (a \varnothing s b) \rightarrow (c \varnothing (o \varnothing s b) \rightarrow (\neg o^{-1} \circ p \varnothing s \rightarrow

\neg a^{-1} o q \varnothing s \rightarrow (b \varnothing (o \varnothing \leq_{sb} b) \rightarrow (b \varnothing (a \varnothing \leq_{sb} b) \rightarrow (b \varnothing s \rightarrow (d^{-1} \circ q \varnothing s \rightarrow (d \varnothing s \rightarrow (c^{-1} \circ p \varnothing s \rightarrow

\neg c \varnothing s \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (q \varnothing s \rightarrow (p \varnothing s \rightarrow

\(((p o q) o b o b) o (q o p)^{-1} \varnothing s)))))))))))) \]

\((\lambda)\)

\[(623, 623) :: \quad \vdash d \varnothing (a \varnothing s b) \rightarrow (c \varnothing (o \varnothing s b) \rightarrow (\neg o^{-1} \circ p \varnothing s \rightarrow

\neg a^{-1} o q \varnothing s \rightarrow (b \varnothing (o \varnothing \leq_{sb} b) \rightarrow (b \varnothing (a \varnothing \leq_{sb} b) \rightarrow (d^{-1} \circ q \varnothing s \rightarrow (b \varnothing (d \varnothing \leq_{sb} b) \rightarrow (c^{-1} \circ p \varnothing s \rightarrow

\neg b \varnothing c \varnothing \leq_{sb} b) \rightarrow (b \varnothing s \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (q \varnothing s \rightarrow (p \varnothing s \rightarrow

\(((p o q) o b o b) o (q o p)^{-1} \varnothing s)))))))))))) \]

\((\mu)\)

\[S.222 \]

\[529 \quad \vdash \text{posval}(s) \rightarrow (b o b \varnothing s \rightarrow (p o q \varnothing s \rightarrow (p o q) o b o b \varnothing s)) \]

\[(529, 529) :: \quad \vdash b \varnothing s \rightarrow (\text{posval}(s) \rightarrow (q \varnothing s \rightarrow (p \varnothing s \rightarrow (p o q) o b o b \varnothing s))) \]

\((\nu)\)

\[(638) : \quad \vdash \varnothing s \rightarrow \varnothing s \rightarrow (p o q) o b o b \varnothing s) \]
\[\vdash ((p \circ q) \circ b \circ b) \circ (q \circ p)^{-1} \circ s \rightarrow (b \circ s \rightarrow (\text{posval} \circ s) \rightarrow (q \circ s \rightarrow (p \circ s \rightarrow (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s)))))) \]

\[(\mu, 529) :: = = = = = = = =
\]

\[\vdash d \circ (a \circ b) \rightarrow (c \circ (a \circ b) \rightarrow (\neg a^{-1} \circ b \circ s) \rightarrow (b \circ (a \circ b) \rightarrow (b \circ (d \circ (a \circ b) \rightarrow (c^{-1} \circ p \circ s) \rightarrow (b \circ (c \circ b) \rightarrow (b \circ s \rightarrow (\text{pos} \circ s) \rightarrow (\text{posval} \circ s) \rightarrow (p \circ s \rightarrow (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s)))))))))))) \\times
\]

\[\vdash d \circ (a \circ b) \rightarrow (\neg a^{-1} \circ b \circ s) \rightarrow (b \circ (a \circ b) \rightarrow (d^{-1} \circ q \circ s) \rightarrow (b \circ (d \circ (a \circ b) \rightarrow (\neg (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s) \rightarrow (b \circ s \rightarrow (\text{pos} \circ s) \rightarrow (\text{posval} \circ s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (c \circ (a \circ b) \rightarrow (b \circ (c \circ b) \rightarrow (\neg c^{-1} \circ p \circ s)))))))))))))
\]

\[\sim \]

\[\vdash d \circ (a \circ b) \rightarrow (\neg a^{-1} \circ b \circ s) \rightarrow (b \circ (a \circ b) \rightarrow (d^{-1} \circ q \circ s) \rightarrow (b \circ (d \circ (a \circ b) \rightarrow (\neg (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s) \rightarrow (b \circ s \rightarrow (\text{pos} \circ s) \rightarrow (\text{posval} \circ s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\forall \tau [\tau \circ (o \circ b) \rightarrow (b \circ (\tau \circ b) \rightarrow (\neg \tau^{-1} \circ p \circ s)])))))))))))))
\]

§ 227. Zerlegung.

Die letzten Umformungen dienen zur Wegschaffung des \(c\). Ebenso muss dann auch \(d\) entfernt werden. Wir brauchen dazu den Satz

\[\vdash \forall \tau [\tau \circ (o \circ b) \rightarrow (b \circ (\tau \circ b) \rightarrow (\neg (\tau^{-1} \circ p \circ s))] \rightarrow (b \circ (o \circ (\text{ext} \circ (\neg \tau^{-1} \circ p \circ s) \circ (d \circ b))) \rightarrow (\neg b^{-1} \circ p \circ s) \rightarrow (b \circ (o \circ (\text{ext} \circ (f(\xi) \circ (d \circ q))) \circ (\neg \tau^{-1} \circ p \circ s)))])
\]

der auf den Satz

\[\vdash \forall \tau [\tau \circ (o \circ q) \rightarrow (b \circ (\tau \circ q) \rightarrow f(\tau))] \rightarrow (b \circ (o \circ (\text{ext} \circ (f(\xi) \circ (d \circ q))) \circ (\neg \tau^{-1} \circ p \circ s))) \rightarrow (b \circ (o \circ (\text{ext} \circ (f(\xi) \circ (d \circ q))) \circ (\neg \tau^{-1} \circ p \circ s))) \]
zurückzuführen ist. Zum Beweise von \((\beta)\) bedürfen wir des Satzes
\[
\vdash r \circ v \rightarrow (b \circ (r \circ \leq_q) \rightarrow (r \circ (o \circ q) \rightarrow \neg b \circ (o \circ (v \circ q)))) \quad (\gamma)
\]
der aus (404) mit (5) und (197) folgt. Für \(v'\) setzen wir dann \(\text{ext} \in (f(\varepsilon))'\) und wenden (142) an.

§ 228. Aufbau.

404 \(\vdash b \circ (o \circ (v \circ q)) \rightarrow \neg b \circ (o \circ (\leq_q \circ \leq_{v'}))\)

\(\times\)

\(\vdash b \circ (o \circ (\leq_q \circ \leq_{v'})) \rightarrow \neg b \circ (o \circ (v \circ q))\) \quad (\alpha)

(5) :: \hfill \hfill

\(\vdash b \circ (r \circ (\leq_{v'})) \rightarrow (r \circ (o \circ q) \rightarrow \neg b \circ (o \circ (v \circ q)))\) \quad (\beta)

(197) :: \hfill \hfill

\(\vdash r \circ v \rightarrow (b \circ (r \circ \leq_q) \rightarrow (r \circ (o \circ q) \rightarrow \neg b \circ (o \circ (v \circ q))))\) \quad (656)

(131) :: \hfill \hfill

\(\vdash r \circ v \rightarrow (b \circ (r \circ \leq_q) \rightarrow (r \circ (o \circ q) \rightarrow \neg b \circ (o \circ (v \circ q))))\) \quad (657)

\[
\begin{align*}
77 & \vdash f(r) \rightarrow r \circ \text{ext} \in (f(\varepsilon)) \\
(657) : & \hfill \hfill \\
& \vdash f(r) \rightarrow (b \circ (r \circ \leq_q) \rightarrow (r \circ (o \circ q) \rightarrow \\
& \quad \neg b \circ (o \circ (\text{ext} \in (f(\varepsilon)) \circ q)))) \\
(IIa) : & \hfill \hfill \\
& \vdash \forall r [x \circ (o \circ q) \rightarrow (b \circ (r \circ \leq_q) \rightarrow f(r))] \\
& \quad (b \circ (r \circ \leq_q) \rightarrow (r \circ (o \circ q) \rightarrow \neg b \circ (o \circ (\text{ext} \in (f(\varepsilon)) \circ q)))) \quad (\alpha) \\
\times \\
& \vdash \forall r [x \circ (o \circ q) \rightarrow (b \circ (r \circ \leq_q) \rightarrow f(r))] \\
& \quad (b \circ (o \circ (\text{ext} \in (f(\varepsilon)) \circ q)) \rightarrow (r \circ (o \circ q) \rightarrow \neg b \circ (r \circ \leq_q))) \quad (\beta)
\end{align*}
\]
\[\vdash \forall \tau [\tau \circ (o \circ q) \rightarrow (b \circ (\tau \circ \leq_q) \rightarrow f(\tau))] \rightarrow
\]
\[(b \circ (o \circ (\text{ext } (f(\varepsilon)) \delta q)) \rightarrow \forall \varepsilon [\varepsilon \circ (o \circ q) \rightarrow \neg b \circ (\varepsilon \circ \leq_q)]) \quad (\gamma) \]

(142) : \[
\vdash \forall \tau [\tau \circ (o \circ q) \rightarrow (b \circ (\tau \circ \leq_q) \rightarrow f(\tau))] \rightarrow
\]
\[(b \circ (o \circ (\text{ext } (f(\varepsilon)) \delta q)) \rightarrow \neg b \circ (o \circ <_q)) \quad (\delta) \]

(130) : \[
\vdash b \circ (o \circ \leq_q) \rightarrow (\forall \tau [\tau \circ (o \circ q) \rightarrow (b \circ (\tau \circ \leq_q) \rightarrow f(\tau))] \rightarrow
\]
\[(b \circ (o \circ (\text{ext } (f(\varepsilon)) \delta q)) \rightarrow o \equiv b)) \quad (\varepsilon) \]

(401) :: \[
\vdash b \circ (o \circ (\text{ext } (f(\varepsilon)) \delta q)) \rightarrow f(o) \quad (659) \]

\[
\text{IIIc } \vdash o = b \rightarrow (\neg o^{-1} \circ p \circ s \rightarrow \neg b^{-1} \circ p \circ s) \quad (659, 660) :: \]

(659, 660) :: \[
\vdash \forall \tau [\tau \circ (o \circ b) \rightarrow (b \circ (\tau \circ \leq_b) \rightarrow \neg \tau^{-1} \circ p \circ s)] \rightarrow
\]
\[(b \circ (o \circ (\text{ext } (\neg e^{-1} \circ p \circ s) \delta_b b)) \rightarrow \neg b^{-1} \circ p \circ s) \quad (661) \]

(655) :: \[
\vdash d \circ (a \circ b) \rightarrow (\neg a^{-1} \circ q \circ s) \rightarrow (\neg a^{-1} \circ q \circ s) \rightarrow
\]
\[(b \circ (o \circ \leq_{sb}) \rightarrow (b \circ (a \circ \leq_{sb}) \rightarrow (d^{-1} \circ q \circ s) \rightarrow
\]
\[(b \circ (o \circ \leq_{sb}) \rightarrow (\neg (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s) \rightarrow
\]
\[(b \circ s \rightarrow (\text{pos } (s)) \rightarrow (\text{posval } (s)) \rightarrow (p \circ s) \rightarrow (q \circ s) \rightarrow
\]
\[(b \circ (o \circ (\text{ext } (\neg e^{-1} \circ p \circ s) \delta_b b)) \rightarrow \neg b^{-1} \circ p \circ s)))])))))))))))) \quad (\alpha) \]

(660, 401) :: \[
\vdash d \circ (a \circ b) \rightarrow (\neg a^{-1} \circ q \circ s) \rightarrow (b \circ (a \circ \leq_{sb}) \rightarrow (d^{-1} \circ q \circ s) \rightarrow
\]
\[(b \circ (d \circ \leq_{sb}) \rightarrow (\neg (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s) \rightarrow
\]
\[(b \circ s \rightarrow (\text{pos } (s)) \rightarrow (\text{posval } (s)) \rightarrow (p \circ s) \rightarrow
\]
\[(q \circ s) \rightarrow (b \circ (o \circ (\text{ext } (\neg e^{-1} \circ p \circ s) \delta_b b)) \rightarrow \neg b^{-1} \circ p \circ s)))])))))))))))) \quad (\beta) \]

×
\[\vdash \neg a^{-1} \circ q \varnothing s \rightarrow (b \varnothing (a \varnothing \leq_{ab}) \rightarrow (b^{-1} \circ p \varnothing s \rightarrow \neg \neg (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \varnothing s \rightarrow (b \varnothing s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow (p \varnothing s \rightarrow (q \varnothing s \rightarrow (b \varnothing (a \varnothing \leq_{ab}) \rightarrow (b^{-1} \circ q \varnothing s))))))))) \]
\[\vdash b^{-1} \circ p \circ s \rightarrow (\neg (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s \rightarrow \]

\[(b \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (b \circ (o \circ (\text{ext} (\neg \varepsilon^{-1} \circ p \circ s) \circ \delta \circ b)) \rightarrow (b^{-1} \circ q \circ s \rightarrow \forall a \neg b \circ (a \circ (\text{ext} (\neg \varepsilon^{-1} \circ q \circ s) \circ \delta \circ b)))))))))) \]

§ 229. Zerlegung.

Wir ersetzen nun das Hinterglied in (662) durch \[\neg (q \circ (b \circ \text{arch}_{b}^{b}))' \], das dann seinerseits mit (636) wegzuschaffen sein wird. Wir brauchen dazu den Satz \[\vdash \forall a \neg (b \circ (a \circ (\text{ext} (\neg \varepsilon \circ f(\varepsilon)) \circ \delta \circ q)))' \] (\(\alpha\))

den wir mit (357) beweisen. Bei der Anwendung auf unsern Fall, wo statt \('q' \circ b'\) zu setzen ist, haben wir dann ausser (497) noch den Satz \[\vdash \text{posval}(s) \rightarrow (b \circ s \rightarrow \neg (a \circ (b \circ a <_{b})))' \] (\(\beta\))
nötig, den wir mit (123) beweisen.

§ 230. Aufbau.

\[\vdash f(a) \rightarrow a \circ \text{ext} (f(\varepsilon)) \] (357) :

\[\vdash \forall a \neg (b \circ (a \circ (\text{ext} (f(\varepsilon)) \circ \delta \circ q))) \rightarrow (f(\varepsilon) \rightarrow \neg (a \circ (a \circ a <_{a})))' \] (663)

\[\vdash (a^{-1} \circ d) \circ b \circ s \rightarrow a^{-1} \circ d \circ b \circ s \] (529) ::

\[\vdash \text{posval}(s) \rightarrow (b \circ s \rightarrow (a^{-1} \circ d \circ s \rightarrow a^{-1} \circ d \circ b \circ s)) \] (\(\alpha\))

\[\vdash \text{posval}(s) \rightarrow (b \circ s \rightarrow (a^{-1} \circ d \circ s \rightarrow (d \circ (c \circ b) \rightarrow a^{-1} \circ c \circ s))) \] (\(\beta\))

\[\vdash \text{posval}(s) \rightarrow (b \circ s \rightarrow \forall \emptyset (a^{-1} \circ d \circ s \rightarrow \forall a (\emptyset \circ (a \circ b) \rightarrow a^{-1} \circ a \circ s))) \] (\(\gamma\)) (123) :

\[^{98}\text{Wir ersetzen nun das Oberglied in (662) durch}\]

\[^{841}\text{Textkorrektur infolge modernisierter Formelnotation!}\]
\[
\vdash a \varphi (a \varphi <_\cdot b) \rightarrow (\text{posval}\ s \rightarrow (b \varphi s \rightarrow \\
(\forall a [a \varphi (a \varphi <_\cdot b) \rightarrow a^{-1} \circ a \varphi s] \rightarrow a^{-1} \circ a \varphi s))))
\]

(\delta)

493 \quad \vdash a \varphi (c \varphi * b) \rightarrow (a^{-1} \circ a \circ b \varphi s \rightarrow a^{-1} \circ c \varphi s)

(570) :

\[
\vdash \text{posval}\ s \rightarrow (a \varphi s \rightarrow (b \varphi s \rightarrow (a \varphi (c \varphi * b) \rightarrow a^{-1} \circ c \varphi s))))
\]

(\varepsilon)

\[\vdash \text{posval}\ s \rightarrow (a \varphi s \rightarrow (b \varphi s \rightarrow \forall a [a \varphi (a \varphi <_\cdot b) \rightarrow a^{-1} \circ a \varphi s]))
\]

(\zeta)

(\delta) :

\[\vdash a \varphi (a \varphi <_\cdot b) \rightarrow (\text{posval}\ s \rightarrow (a \varphi s \rightarrow (b \varphi s \rightarrow a^{-1} \circ a \varphi s))))
\]

(\eta)

\[\vdash \neg a^{-1} \circ a \varphi s \rightarrow (\text{posval}\ s \rightarrow (a \varphi s \rightarrow \neg a \varphi (a \varphi <_\cdot b))))
\]

(\theta)

(536) :

\[\vdash \text{posval}\ s \rightarrow (a \varphi s \rightarrow (b \varphi s \rightarrow \neg a \varphi (a \varphi <_\cdot b)))
\]

(664)

(663) :

\[\vdash \forall a \lnot b \varphi (a \varphi (\text{ext} \varepsilon (\neg \varepsilon^{-1} \circ q \varphi s) \delta * b)) \rightarrow (\text{funk}\ b) \rightarrow (\text{posval}\ s \rightarrow \\
(a \varphi s \rightarrow (b \varphi s \rightarrow (\neg a^{-1} \circ q \varphi s \rightarrow \neg b \varphi (a \varphi \leq_* b)))))
\]

(\alpha)

\[\vdash \forall a \lnot b \varphi (a \varphi (\text{ext} \varepsilon (\neg \varepsilon^{-1} \circ q \varphi s) \delta * b)) \rightarrow (\text{funk}\ b) \rightarrow (\text{posval}\ s \rightarrow \\
(a \varphi s \rightarrow (b \varphi s \rightarrow (b \varphi (a \varphi \leq_* b) \rightarrow a^{-1} \circ q \varphi s))))
\]

(\beta)

(623, 497) :

\[\vdash \forall a \lnot b \varphi (a \varphi (\text{ext} \varepsilon (\neg \varepsilon^{-1} \circ q \varphi s) \delta * b)) \rightarrow (\text{posval}\ s \rightarrow (b \varphi s \rightarrow \\
(b \varphi (a \varphi \leq_* b) \rightarrow a^{-1} \circ q \varphi s)))
\]

(\gamma)

\[\vdash \forall a \lnot b \varphi (a \varphi (\text{ext} \varepsilon (\neg \varepsilon^{-1} \circ q \varphi s) \delta * b)) \rightarrow (\text{posval}\ s \rightarrow (b \varphi s \rightarrow \\
\forall t [b \varphi (t \varphi \leq_* b) \rightarrow t^{-1} \circ q \varphi s])
\]

(\delta)

(608) :

\[\vdash \forall a \left[\neg b \circ (a \circ (\text{ext} \circ (\neg \epsilon^{-1} \circ q \circ s) \delta_a b)) \right] \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow \neg q \circ s)) \]

(636) :

\[\vdash \text{pos}(s) \rightarrow (\forall a \left[\neg b \circ (a \circ (\text{ext} \circ (\neg \epsilon^{-1} \circ q \circ s) \delta_a b)) \right] \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow \neg q \circ s))) \]

(665) :

\[\vdash b^{-1} \circ p \circ s \rightarrow (\neg (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s \rightarrow (\text{pos}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (b \circ (a \circ (\text{ext} \circ (\neg \epsilon^{-1} \circ p \circ s) \delta_a b)) \rightarrow (b^{-1} \circ q \circ s \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow \neg q \circ s))))) \]) \]

(662) :

\[\vdash b^{-1} \circ p \circ s \rightarrow (\neg (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s \rightarrow (\text{pos}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (b^{-1} \circ q \circ s \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow \neg q \circ s))))) \]) \]

(665) :

\[\vdash b^{-1} \circ p \circ s \rightarrow (\neg (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s \rightarrow (\text{pos}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (b^{-1} \circ q \circ s \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow \neg p \circ s))))))) \]

(666) :

\[\vdash b^{-1} \circ p \circ s \rightarrow (\text{pos}(s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (b^{-1} \circ q \circ s \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow (q \circ p)^{-1} \circ (p \circ q) \circ b \circ b \circ s)))))) \]

(\[\vdash \forall \epsilon [\epsilon^{-1} \circ q \circ s \rightarrow (\epsilon^{-1} \circ p \circ s \rightarrow (\epsilon \circ \epsilon^{-1} \circ a \circ s)) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow (a \circ s))))]) \]

S.230
§ 231. Zerlegung.

Es wird nun noch unsere Aufgabe sein, zu beweisen, dass es in der Positivklasse \(s \) immer ein \(b \) gibt, sodass \(b \circ a \) kleiner ist als \(a \), falls \(a \) der Positivklasse \(s \) angehört. Danach wird dann auch zu beweisen sein, dass es ein solches \(b \) gibt, welches zugleich kleiner als \(p \) und als \(q \) ist. Wir leiten demnach zunächst den Satz

\[
\vdash \forall e \left[e e s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s \right] \rightarrow (pos (s) \rightarrow (posval (s) \rightarrow \neg a \circ s))
\]

ab. Hierzu dient uns der Satz (606), der besagt, dass es in einer Positivklasse immer eine Relation \(b \) gibt, die kleiner ist als eine gegebene Relation in dieser Positivklasse. Wir unterscheiden die Fälle:

1. \(b \) ist kleiner als \(b^{-1} \circ a \),
2. \(b^{-1} \circ a \) ist kleiner als \(b \),
3. \(b^{-1} \circ a \) fällt mit \(b \) zusammen.

Im ersten Falle ist \(b \) selbst von der gesuchten Art, im zweiten Falle ist es \(b^{-1} \circ a \), im letzten Falle genügt jede Relation, die in unserer Positivklasse kleiner als \(b \) ist, unserer Anforderung, und eine solche gibt es immer nach (606).

§ 232. Aufbau.

506 \[\vdash (b \circ b)^{-1} \circ a \circ s \rightarrow \neg b^{-1} \circ b^{-1} \circ a \circ s \] (IIa) :: \[\vdash \forall e \left[e e s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s \right] \rightarrow (b \circ s \rightarrow \neg b^{-1} \circ b^{-1} \circ a \circ s) \] (\(\alpha \))

588 : \[\vdash b^{-1} \circ a \circ s \rightarrow (\neg b^{-1} \circ a = b \rightarrow (posval (s) \rightarrow (\forall e \left[e e s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s \right] \rightarrow (b \circ s \rightarrow (b^{-1} \circ a)^{-1} \circ b \circ s)))) \] (\(\beta \))

S.231

\[\vdash \neg b^{-1} \circ a = b \rightarrow (posval (s) \rightarrow (\forall e \left[e e s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s \right] \rightarrow (b \circ s \rightarrow (pos (s) \rightarrow (b^{-1} \circ a \circ s \rightarrow ((b^{-1} \circ a) \circ b^{-1} \circ a)^{-1} \circ b \circ b^{-1} \circ a \circ s)))))) \] (\(\gamma \))

567 : \[\vdash a \circ s \rightarrow (\neg b^{-1} \circ a = b \rightarrow (posval (s) \rightarrow (\forall e \left[e e s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s \right] \rightarrow (b \circ s \rightarrow (pos (s) \rightarrow (b^{-1} \circ a \circ s \rightarrow ((b^{-1} \circ a) \circ b^{-1} \circ a)^{-1} \circ a \circ s)))))))) \] (\(\delta \))

\(\times \)
\[
\begin{align*}
\epsilon & \vdash a \circ s \rightarrow (\neg ((b^{-1} \circ a) \circ b^{-1} \circ a)^{-1} \circ a \circ s \rightarrow \text{posval}(s) \rightarrow (\forall e [e \circ s \rightarrow (\neg (e \circ e)^{-1} \circ a \circ e s] \rightarrow (b \circ s \rightarrow (\text{pos}(s) \rightarrow (b^{-1} \circ a \circ s \rightarrow b^{-1} \circ a = b)))))) \\
(IIa) : & \quad \vdash a \circ s \rightarrow \text{posval}(s) \rightarrow (\forall e [e \circ s \rightarrow (\neg (e \circ e)^{-1} \circ a \circ e s] \rightarrow (b \circ s \rightarrow (\text{pos}(s) \rightarrow (b^{-1} \circ a \circ s \rightarrow b^{-1} \circ a = b)))))) \\
(667) : & \quad \vdash b^{-1} \circ a = b \rightarrow b \circ b^{-1} \circ a = b \circ b \\
(567) : & \quad \vdash a \circ s \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow (b^{-1} \circ a = b = a = b \circ b))) \\
(668) : & \quad \vdash (p \circ q) \circ (c \circ d)^{-1} \circ s \rightarrow (p \circ q \circ s \rightarrow (\text{pos}(s) \rightarrow (c \circ d \circ s \rightarrow (c \circ d)^{-1} \circ p \circ q \circ s))) \\
(529, 529) : & \quad \vdash a = b \circ b \rightarrow ((c \circ c)^{-1} \circ b \circ b \circ s \rightarrow (c \circ c)^{-1} \circ a \circ s) \\
(668, 669) : & \quad \vdash a \circ s \rightarrow (b^{-1} \circ a = b \rightarrow (c^{-1} \circ b \circ s \rightarrow (b \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow (c \circ s \rightarrow (c \circ c)^{-1} \circ a \circ s)))))) \\
(669) : & \quad \vdash a = b \circ b \rightarrow ((c \circ c)^{-1} \circ b \circ b \circ s \rightarrow (c \circ c)^{-1} \circ a \circ s) \\
(667, IIa) : & \quad \vdash a \circ s \rightarrow (b^{-1} \circ a \circ s \rightarrow (\forall e [e \circ s \rightarrow (\neg (e \circ e)^{-1} \circ a \circ e s] \rightarrow (b \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow (c \circ s \rightarrow (c \circ c)^{-1} \circ b \circ s))))))))) \\
\end{align*}
\]
\[\vdash a \circ s \rightarrow (b^{-1} \circ a \circ s) \rightarrow (\forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s] \rightarrow (b \circ s \rightarrow (pos(s) \rightarrow (posval(s) \rightarrow \forall e [e \circ s \rightarrow \neg e^{-1} \circ b \circ s]))) \] \quad (\delta)

\[\vdash a \circ s \rightarrow (b^{-1} \circ a \circ s) \rightarrow (\forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s] \rightarrow (b \circ s \rightarrow (pos(s) \rightarrow (posval(s) \rightarrow \neg b \circ s)))) \] \quad (\epsilon)

\begin{align*}
&\vdash a \circ s \rightarrow (\forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s] \rightarrow (pos(s) \rightarrow (posval(s) \rightarrow b \circ s \rightarrow \neg b^{-1} \circ a \circ s)))) \quad (\zeta) \\
&\quad \vdash a \circ s \rightarrow (\forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s] \rightarrow (pos(s) \rightarrow (posval(s) \rightarrow \forall e [e \circ s \rightarrow \neg \neg b \circ s]))) \quad (\eta)
\end{align*}

\[\vdash a \circ s \rightarrow (\forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s] \rightarrow (pos(s) \rightarrow (posval(s) \rightarrow \forall e [e \circ s \rightarrow \neg a \circ s]))) \quad (\iota)
\]

\[\vdash \forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s] \rightarrow (pos(s) \rightarrow (posval(s) \rightarrow \neg a \circ s)) \] \quad (\vartheta)

S.233

Mit (670) beweisen wir nun den Satz:

\[\vdash (e \circ p \circ s \rightarrow (\forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s] \rightarrow (p \circ s \rightarrow (pos(s) \rightarrow (posval(s) \rightarrow \neg a \circ s)))) \] \quad (*

\[\vdash \forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s] \rightarrow (pos(s) \rightarrow (posval(s) \rightarrow \neg a \circ s)) \] \quad (\vartheta)

\[\vdash \forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s] \rightarrow (pos(s) \rightarrow (posval(s) \rightarrow \neg a \circ s)) \] \quad (\vartheta)

\section*{§ 233. Zerlegung.}

Mit (670) beweisen wir nun den Satz:

\[\vdash (e \circ p \circ s \rightarrow (\forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s] \rightarrow (p \circ s \rightarrow (pos(s) \rightarrow (posval(s) \rightarrow \neg a \circ s)))) \] \quad (*)

- der im Wesentlichen — nach einer Kontraposition — besagt, dass es in einer Positivklasse \(s \) eine Relation \(e \) gibt, die kleiner ist als eine gegebene Relation \(p \) und deren Doppeltes \(e \circ e \) kleiner ist als eine gegebene Relation \(a \), falls \(p \) und \(a \) derselben Positivklasse \(s \) angehören. Wir nehmen dazu an, es sei uns in unserer Positivklasse eine Relation \(e \) bekannt der Art, dass \(e \circ e \) kleiner sei als \(a \). Nun sind zwei Fälle zu unterscheiden:

1. \(e \) ist kleiner als \(p \).
2. \(e \) ist nicht kleiner als \(a \).

\[^{99} \text{der im Wesentlichen — nach einer Wendung — besagt,} \]

\[^{944} \text{Textkorrektur infolge modernisierter Formelnotation!} \]
Im ersten Falle haben wir in e schon eine Relation der verlangten Art. Im zweiten Falle gibt es in unserer Positivklasse eine Relation (b) kleiner als p, die dann auch kleiner als e ist, von der also gilt, dass $b \circ b$ kleiner als $e \circ e$ und mithin auch kleiner als a ist.

§ 234. Aufbau.

$\vdash e \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (p^{-1} \circ e \circ s \rightarrow \\
(b^{-1} \circ p \circ s \rightarrow b^{-1} \circ e \circ s))))$

$(588) :: \\
\vdash p \circ s \rightarrow (\neg p = e \rightarrow (\text{posval}(s) \rightarrow (e \circ s \rightarrow (\neg e^{-1} \circ p \circ s \rightarrow \\
(b^{-1} \circ p \circ s \rightarrow b^{-1} \circ e \circ s))))))$

$(IIIc) : \begin{array}{c}
\vdash p \circ s \rightarrow (\text{posval}(s) \rightarrow (e \circ s \rightarrow (\neg e^{-1} \circ p \circ s \rightarrow \\
(b^{-1} \circ p \circ s \rightarrow b^{-1} \circ e \circ s))))
\end{array}$

$(671) \vdash b^{-1} \circ e \circ s \rightarrow (b \circ b^{-1} \circ e \circ e \circ s)))$

$(586) :: \\
\vdash a \circ s \rightarrow (e \circ e \circ s \rightarrow ((e \circ e)^{-1} \circ a \circ s \rightarrow b^{-1} \circ e \circ s \rightarrow \\
(e \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow (b \circ b^{-1} \circ a \circ s)))))))))

$(671, 529) :: \\
\vdash a \circ s \rightarrow ((e \circ e)^{-1} \circ a \circ s \rightarrow \\
(p \circ s \rightarrow (\neg e^{-1} \circ p \circ s \rightarrow b^{-1} \circ p \circ s \rightarrow \\
(e \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow (b \circ b^{-1} \circ a \circ s))))))))))

$(\beta) \times \\
\vdash a \circ s \rightarrow (\neg (b \circ b)^{-1} \circ a \circ s \rightarrow \\
(p \circ s \rightarrow (\neg e^{-1} \circ p \circ s \rightarrow b^{-1} \circ p \circ s \rightarrow \\
(e \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow (b \circ b^{-1} \circ a \circ s))))))))))$

$(IIa) :: \\
\vdash a \circ s \rightarrow (\neg (b \circ b)^{-1} \circ a \circ s \rightarrow \\
(p \circ s \rightarrow (\neg e^{-1} \circ p \circ s \rightarrow b^{-1} \circ p \circ s \rightarrow \\
(e \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow (b \circ b^{-1} \circ a \circ s))))))))))$
\[\vdash a \circ s \rightarrow (\forall e [e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)] \rightarrow \\
(p \circ s \rightarrow (\neg e^{-1} \circ p \circ s \rightarrow (b^{-1} \circ p \circ s \rightarrow \\
(e \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow (b \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)))))))) \qquad (\delta) \\
(IIa) \quad \vdash a \circ s \rightarrow (\forall e [e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)] \rightarrow \\
(p \circ s \rightarrow (b^{-1} \circ p \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow \\
(b \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s))))))) \qquad (\varepsilon) \\
\quad \vdash a \circ s \rightarrow (\forall e [e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)] \rightarrow \\
(p \circ s \rightarrow (b^{-1} \circ p \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow \\
(b \circ s \rightarrow (\forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)]))))))) \qquad (\zeta) \\
\quad \vdash a \circ s \rightarrow (\forall e [e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)] \rightarrow \\
(p \circ s \rightarrow (b^{-1} \circ p \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow \\
(b \circ s \rightarrow (\forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)]))))))) \qquad (\eta) \\
\quad \times \\
\quad \vdash \forall e [e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)] \rightarrow \\
(p \circ s \rightarrow (a \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow \\
(b \circ s \rightarrow \neg b^{-1} \circ p \circ s)))))) \qquad (\vartheta) \\
\quad \vdash \forall e [e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)] \rightarrow \\
(p \circ s \rightarrow (a \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow \\
\forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)])))) \qquad (\iota) \\
(606) \quad \vdash \forall e [e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)] \rightarrow \\
(p \circ s \rightarrow (a \circ s \rightarrow (\text{pos}(s) \rightarrow (\text{posval}(s) \rightarrow \\
\forall e [e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)])))) \qquad (\epsilon) \\
\text{S.235} \]
§ 235. Zerlegung.
Um nun endlich den Satz
\[\vdash \forall e [e^{-1} \circ p \circ s \rightarrow (e \circ s - o \circ e)^{-1} \circ a \circ s] \rightarrow \]
\[(p \circ s \rightarrow (a \circ s \rightarrow (pos (s) \rightarrow (posval (s) \rightarrow \neg p \circ s)))) \]
\((\kappa) \)
\[\times \]
\[\vdash \forall e [e^{-1} \circ p \circ s \rightarrow (e \circ s - o \circ e)^{-1} \circ a \circ s] \rightarrow \]
\[(p \circ s \rightarrow (pos (s) \rightarrow (posval (s) \rightarrow \neg a \circ s))) \]
(672)
zu beweisen, verfahren wir im Wesentlichen wie oben, indem wir die Fälle unterscheiden, dass \(p \) kleiner ist als \(q \), und dass \(p \) nicht kleiner ist als \(q \).

§ 236. Aufbau.
586 \[\vdash q \circ s \rightarrow (posval (s) \rightarrow (p \circ s \rightarrow (p^{-1} \circ q \circ s \rightarrow \]
\[(e^{-1} \circ p \circ s \rightarrow e^{-1} \circ q \circ s)))) \]
\((IIa) : \)
\[\vdash \forall e [e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)] \rightarrow \]
\[(q \circ s \rightarrow (posval (s) \rightarrow (p \circ s \rightarrow (p^{-1} \circ q \circ s \rightarrow \]
\[(e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)))))) \]
\((\alpha) \)
\\[\therefore \]
\[\vdash \forall e [e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)] \rightarrow \]
\[(q \circ s \rightarrow (posval (s) \rightarrow (p \circ s \rightarrow (p^{-1} \circ q \circ s \rightarrow \]
\[\forall e [e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)]))) \]
\((\beta) \)
(672)
\[\vdash \forall e [e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)] \rightarrow \]
\[(q \circ s \rightarrow (p^{-1} \circ q \circ s \rightarrow (p \circ s \rightarrow \]
\[(pos (s) \rightarrow (posval (s) \rightarrow \neg a \circ s)))) \]
(672)
\((\gamma) \)
671 \(\vdash q \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (\neg p^{-1} \circ q \circ s \rightarrow (e^{-1} \circ q \circ s \rightarrow e^{-1} \circ p \circ s)))) \)

\((IIa)\) :

\(\vdash \forall e \left(e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)) \right) \rightarrow \)

\((q \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (\neg p^{-1} \circ q \circ s \rightarrow (e^{-1} \circ q \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)))))) \)

\((6) \)

\(\vdash \forall e \left(e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)) \right) \rightarrow \)

\((q \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (\neg p^{-1} \circ q \circ s \rightarrow (e^{-1} \circ q \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)))))) \)

\((6) \)

\(\vdash \forall e \left(e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)) \right) \rightarrow \)

\((p \circ s \rightarrow (\neg p^{-1} \circ q \circ s \rightarrow (q \circ s \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (\neg a \circ s)))))) \)

\((6) \)

\((6) \)

\(\vdash \forall e \left(e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)) \right) \rightarrow \)

\((p \circ s \rightarrow (q \circ s \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (\neg a \circ s)))))) \)

\((6) \)

\((6) \)

\((6) \)

\((6) \)

\((6) \)

\(\vdash a \circ s \rightarrow (p \circ s \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (q \circ s \rightarrow (\text{posval}(s) \rightarrow (\neg a \circ s))))))) \)

zu erhalten. Mit Hilfe von \((644)\) gelangen wir dann ans Ziel unseres Abschnittes.

\[
\begin{equation}
671 \quad \vdash q \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (\neg p^{-1} \circ q \circ s \rightarrow (e^{-1} \circ q \circ s \rightarrow e^{-1} \circ p \circ s))))
\end{equation}
\]

\[(IIa) : \]

\[
\begin{align*}
\vdash \forall e & \left(e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)) \right) \rightarrow \\
& (q \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (\neg p^{-1} \circ q \circ s \rightarrow (e^{-1} \circ q \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s))))))
\end{align*}
\]

\[
(6)
\]

\[
\begin{align*}
\vdash \forall e & \left(e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)) \right) \rightarrow \\
& (q \circ s \rightarrow (\text{posval}(s) \rightarrow (p \circ s \rightarrow (\neg p^{-1} \circ q \circ s \rightarrow (e^{-1} \circ q \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s))))))
\end{align*}
\]

\[
(6)
\]

\[
\begin{align*}
\vdash \forall e & \left(e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)) \right) \rightarrow \\
& (p \circ s \rightarrow (\neg p^{-1} \circ q \circ s \rightarrow (q \circ s \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (\neg a \circ s))))))
\end{align*}
\]

\[
(6)
\]

\[
\begin{align*}
\vdash \forall e & \left(e^{-1} \circ q \circ s \rightarrow (e^{-1} \circ p \circ s \rightarrow (e \circ s \rightarrow \neg (e \circ e)^{-1} \circ a \circ s)) \right) \rightarrow \\
& (p \circ s \rightarrow (q \circ s \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (\neg a \circ s))))))
\end{align*}
\]

\[
(6)
\]

\[
\begin{align*}
\vdash a \circ s & \rightarrow (p \circ s \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (q \circ s \rightarrow (\text{posval}(s) \rightarrow (\neg a \circ s)))))))
\end{align*}
\]

\[
\text{zu erhalten. Mit Hilfe von (644) gelangen wir dann ans Ziel unseres Abschnittes.}
\]

\[
\text{§ 237. Zerlegung.}
\]

Wir wenden \((673)\) auf \((666)\) an, um den Satz

\[
\vdash a \circ s \rightarrow (p \circ s \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (\text{posval}(s) \rightarrow (q \circ s \rightarrow (\text{posval}(s) \rightarrow (\neg a \circ s)))))))
\]

zu erhalten. Mit Hilfe von \((644)\) gelangen wir dann ans Ziel unseres Abschnittes.

\[
\text{§ 238. Aufbau.}
\]

\[
\begin{align*}
\vdash a \circ s & \rightarrow (\text{posval}(s) \rightarrow (b \circ b \circ s \rightarrow ((b \circ b)^{-1} \circ a \circ s \rightarrow \\
(((q \circ p)^{-1} \circ p \circ q) \circ b \circ b \circ s \rightarrow \\
((q \circ p)^{-1} \circ p \circ q) \circ a \circ s))))
\end{align*}
\]

\[
(666, 529) :: = = = = = = =
\]
\[
\vdash a \circ s \rightarrow (b \circ b)^{-1} \circ a \circ s \rightarrow (b^{-1} \circ p \circ s) \rightarrow (\text{pos} (s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (b^{-1} \circ q \circ s) \rightarrow (\text{posval} (s) \rightarrow (b \circ s \rightarrow ((q \circ p)^{-1} \circ p \circ q) \circ a \circ s)))))) \tag{\alpha}
\]
\[
\times
\]
\[
\vdash a \circ s \rightarrow (\neg ((q \circ p)^{-1} \circ p \circ q) \circ a \circ s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow ((q \circ p)^{-1} \circ p \circ q) \circ a \circ s)) \rightarrow (\text{posval} (s) \rightarrow (\neg a \circ s) \rightarrow (q \circ p)^{-1} \circ p \circ q) \circ a \circ s))))) \tag{\beta}
\]
\[
\sim
\]
\[
\vdash a \circ s \rightarrow (\neg ((q \circ p)^{-1} \circ p \circ q) \circ a \circ s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\neg (q \circ p)^{-1} \circ p \circ q) \circ a \circ s))))) \tag{\gamma}
\]

(673) :
\[
\vdash a \circ s \rightarrow (\neg ((q \circ p)^{-1} \circ p \circ q) \circ a \circ s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow ((q \circ p)^{-1} \circ p \circ q) \circ a \circ s))))) \tag{\delta}
\]
\[
\times
\]
\[
\vdash a \circ s \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\neg (q \circ p)^{-1} \circ p \circ q) \circ a \circ s)))))) \tag{\varepsilon}
\]

(Ic) :
\[
\vdash ((p \circ q)^{-1} \circ p \circ q) \circ a \circ s \rightarrow (a \circ s \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\neg (q \circ p)^{-1} \circ q \circ p) \circ a \circ s) \rightarrow (\neg (q \circ p)^{-1} \circ p \circ q) \circ a \circ s)))))) \tag{\zeta}
\]

(\varepsilon) ::
\(\vdash p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow (\text{posval} (s) \rightarrow \\
\text{a} \circ s \rightarrow \neg (((p \circ q)^{-1} \circ q \circ p) \circ a \circ s \rightarrow \\
\neg ((q \circ p)^{-1} \circ p \circ q) \circ a \circ s))))))))

(\eta)

S.238

\(\vdash p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow (\text{posval} (s) \rightarrow \\
\forall a [a \circ s \rightarrow \neg (((p \circ q)^{-1} \circ q \circ p) \circ a \circ s \rightarrow \\
\neg ((q \circ p)^{-1} \circ p \circ q) \circ a \circ s)])])

(\vartheta)

(644) :
\(\vdash p \circ q \circ s \rightarrow (q \circ p \circ s \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow (\text{posval} (s) \rightarrow \\
p \circ q = q \circ p))))))

(\iota)

(529, 529) ::
\(\vdash p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow (\text{posval} (s) \rightarrow p \circ q = q \circ p))))

(\kappa)

(607) ::
\(\vdash p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow p \circ q = q \circ p))

(674)

(IIIh) :
\(\vdash p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow q^{-1} \circ p \circ q = q^{-1} \circ q \circ p))

(\alpha)

(570) :
\(\vdash \text{posval} (s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow q^{-1} \circ p \circ q = p \circ q))))

(\beta)

(IIIh) :
\(\vdash \text{posval} (s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow q^{-1} \circ p \circ q = q^{-1}) \circ q^{-1})))

(\gamma)

(491) :
\(\vdash \text{posval} (s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow \\
q^{-1} \circ p \circ q \circ q^{-1} = p \circ q \circ q^{-1})))

(\delta)

(580) :
\(\vdash \text{posval} (s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow q^{-1} \circ p = p \circ q)))

(\varepsilon)

(607) ::
\(\vdash \text{posval} (s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow q^{-1} \circ p = p \circ q))))
\[\vdash p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow q^{-1} \circ p = p \circ q^{-1})) \]

(IIIa) \[\vdash p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow (f(p \circ q^{-1}) \rightarrow f(q^{-1} \circ p)))) \]

IIIc \[\vdash q^{-1} \circ p = p \circ q^{-1} \rightarrow (f(q^{-1} \circ p) \rightarrow f(p \circ q^{-1})) \]

(675) :: \[\vdash p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow (f(q^{-1} \circ p) \rightarrow f(p \circ q^{-1})))) \]

\begin{align*}
(IIIa) & \vdash p \circ q = q \circ p \rightarrow (f(q \circ p) \rightarrow f(p \circ q)) \\
(674) & \vdash p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow (f(q \circ p) \rightarrow f(p \circ q))))
\end{align*}

\[\vdash q \circ \partial s \rightarrow (p \circ \partial s \rightarrow (\text{pos} (s) \rightarrow q \circ p = p \circ q)) \]

\section*{Z. Beweis des Satzes}

\[\vdash q \circ \partial s \rightarrow (p \circ \partial s \rightarrow (\text{pos} (s) \rightarrow q \circ p = p \circ q)) \]

§ 239. Zerlegung.

Wir gehen nun daran, das commutative Gesetz für das ganze Größengebiet einer Positivklasse zu beweisen.

Als Zwischenstufe dienen uns die Sätze

\[\vdash p \circ s \rightarrow (q \circ s \rightarrow (\text{pos} (s) \rightarrow q \circ p = p \circ q)) \]

(\alpha)

\[\vdash p \circ s \rightarrow (b \circ s \rightarrow (\text{pos} (s) \rightarrow b^{-1} \circ p = p \circ b^{-1})) \]

(\beta)

\[\vdash p \circ s \rightarrow (\text{pos} (s) \rightarrow (b \circ s \rightarrow b^{-1} \circ b \circ p = p \circ b^{-1} \circ b)) \]

(\gamma)

von denen wir zunächst (\alpha) beweisen.

§ 240. Aufbau.

\[\vdash (a^{-1} \circ a) \circ q = q \rightarrow (q \circ a^{-1} \circ a = q \rightarrow q \circ a^{-1} \circ a = (a^{-1} \circ a) \circ q) \]

(562, 571) :: \[\vdash a \circ s \rightarrow (\text{posval} (s) \rightarrow (q \circ s \rightarrow q \circ a^{-1} \circ a = (a^{-1} \circ a) \circ q)) \]

(\alpha)

(607) :: \[\vdash a \circ s \rightarrow (\text{pos} (s) \rightarrow (q \circ s \rightarrow q \circ a^{-1} \circ a = (a^{-1} \circ a) \circ q)) \]

(679) :: \[\vdash q \circ p = p \circ q \rightarrow (a \circ s \rightarrow (\text{pos} (s) \rightarrow (q \circ s \rightarrow q \circ a^{-1} \circ a = (a^{-1} \circ a) \circ q)) \]

(\alpha)

\[\vdash a^{-1} \circ q = q \circ a^{-1} \rightarrow q \circ a^{-1} = a^{-1} \circ q \]

(675) :: \[\vdash a^{-1} \circ q = q \circ a^{-1} \rightarrow q \circ a^{-1} = a^{-1} \circ q \]
§ 241. Zerlegung.

Wir beweisen nun in ähnlicher Weise den Satz (β) des § 239, indem wir für »p« erst »a⁻¹ ◦ a«, dann »a⁻¹ ◦ a« nehmen und zuletzt (675) anwenden.

§ 242. Aufbau.

489 ⊢ (a⁻¹ ◦ b⁻¹) ◦ a = a⁻¹ ◦ b⁻¹ ◦ a

(507) :

(678) :

(506) :
\(\vdash \alpha \vdash \beta \ \rightarrow \ (\beta \vdash \gamma) \)
(677):
\[\vdash a \vdash s \rightarrow (b \vdash s \rightarrow (\text{pos}(s) \rightarrow b^{-1} \circ a^{-1} \circ a = a^{-1} \circ b^{-1} \circ a)) \]
(681):
\[\vdash a \vdash s \rightarrow (b \vdash s \rightarrow (\text{pos}(s) \rightarrow b^{-1} \circ a^{-1} \circ a = (a^{-1} \circ a) \circ b^{-1})) \]

\((IIIb) : \quad \cdots \cdots \cdots \cdots \cdots \cdots \)

S.241

\[\vdash \neg b^{-1} \circ p = p \circ b^{-1} \rightarrow (a \vdash s \rightarrow (b \vdash s \rightarrow (\text{pos}(s) \rightarrow \neg p = a^{-1} \circ a))) \]
(681):
\[\vdash a \vdash b \rightarrow \neg b^{-1} \circ a^{-1} = (b \circ a)^{-1} \]
(505):
\[\vdash a \circ b = b \circ a \rightarrow b^{-1} \circ a^{-1} = (b \circ a)^{-1} \]
(505) #47:
\[\vdash a \circ b = b \circ a \rightarrow b^{-1} \circ a^{-1} = a^{-1} \circ b^{-1} \]
(674):
\[\vdash a \vdash s \rightarrow (b \vdash s \rightarrow (\text{pos}(s) \rightarrow b^{-1} \circ a^{-1} = a^{-1} \circ b^{-1})) \]
(681):
\[\vdash a \vdash s \rightarrow (b \vdash s \rightarrow (\text{pos}(s) \rightarrow \neg p = a^{-1})) \]
(If):
\[\vdash \neg b^{-1} \circ p = p \circ b^{-1} \rightarrow (a \vdash s \rightarrow (b \vdash s \rightarrow (\text{pos}(s) \rightarrow \neg p = a^{-1} \circ a))) \]
(674):
\[\vdash a \vdash s \rightarrow (b \vdash s \rightarrow (\text{pos}(s) \rightarrow \neg p = a^{-1} \circ a))) \]
(674):
\[\vdash a \vdash s \rightarrow (b \vdash s \rightarrow (\text{pos}(s) \rightarrow \neg p = a^{-1} \circ a))) \]

\[\forall q \ [q \vdash s \rightarrow \neg (\neg p = q^{-1} \circ p = q^{-1})] \]
(675):
\[\vdash p \vdash \delta s \rightarrow (\neg b^{-1} \circ p = p \circ b^{-1} \rightarrow (b \vdash s \rightarrow (\text{pos}(s) \rightarrow p \vdash s))) \]
(675):
\[\vdash p \vdash \delta s \rightarrow (\neg p \vdash s \rightarrow (b \vdash s \rightarrow (\text{pos}(s) \rightarrow b^{-1} \circ p = p \circ b^{-1}))) \]
\(\vdash p \circ \delta s \rightarrow (b \circ s \rightarrow (\text{pos}(s) \rightarrow b^{-1} \circ p = p \circ b^{-1})) \)

(682)

\((IIIb) : \quad \quad \quad \vdash \neg q \circ p = p \circ q \rightarrow (p \circ \delta s \rightarrow (b \circ s \rightarrow (\text{pos}(s) \rightarrow \neg q = b^{-1}))) \)

(683)

§ 243. Nun ist noch der Satz (\(\gamma \)) des § 239 in ähnlicher Weise zu beweisen. Wir können dazu (679) und (681) wieder benutzen. Mit diesem Satze und (683) und (680) gelangen wir an's Ziel unseres Abschnittes \(Z \).

§ 244. Aufbau.

\(IIIf \vdash p \circ b^{-1} \circ b = (b^{-1} \circ b) \circ p \rightarrow (b^{-1} \circ b) \circ p = p \circ b^{-1} \circ b \)

(679) :: -- -- -- -- -- --

\(\vdash b \circ s \rightarrow (\text{pos}(s) \rightarrow (p \circ s \rightarrow (b^{-1} \circ b) \circ p = p \circ b^{-1} \circ b)) \)

(684)

\(IIIf \vdash a^{-1} \circ b^{-1} \circ b = (b^{-1} \circ b) \circ a^{-1} \rightarrow (b^{-1} \circ b) \circ a^{-1} = a^{-1} \circ b^{-1} \circ b \)

(681) :: -- -- -- -- -- --

\(\vdash b \circ s \rightarrow (a \circ s \rightarrow (\text{pos}(s) \rightarrow (b^{-1} \circ b) \circ a^{-1} = a^{-1} \circ b^{-1} \circ b)) \)

(685)

\((IIIb) : \quad \quad \quad \vdash (b^{-1} \circ b) \circ p = p \circ b^{-1} \circ b \rightarrow \)

\((b \circ s \rightarrow (a \circ s \rightarrow (\text{pos}(s) \rightarrow \neg p = a^{-1}))) \)

(686)

\(IIIe \vdash (a^{-1} \circ a) \circ a^{-1} \circ a = (a^{-1} \circ a) \circ a^{-1} \circ a \)

(559) :

\(\vdash \text{posval}(s) \rightarrow (a \circ s \rightarrow (b \circ s \rightarrow (b^{-1} \circ b) \circ a^{-1} \circ a = (a^{-1} \circ a) \circ b^{-1} \circ b)) \)

(\(\alpha \))

(607) :: -- -- -- -- -- --

\(\vdash \text{posval}(s) \rightarrow (a \circ s \rightarrow (b \circ s \rightarrow (b^{-1} \circ b) \circ a^{-1} \circ a = (a^{-1} \circ a) \circ b^{-1} \circ b)) \)

(687)

\((IIIb) : \quad \quad \quad \vdash \) -- -- -- -- -- --
⊢ ¬ (b⁻¹ o b) o p = p o b⁻¹ o b → (pos (s) → (a ⊢ s → (b ⊢ s → ¬ p = a⁻¹ o a))))

(Iff) :

⊢ p = a⁻¹ → (¬ (b⁻¹ o b) o p = p o b⁻¹ o b → (pos (s) → (b ⊢ s → (b ⊢ s → ¬ p = a⁻¹ → p = a⁻¹ o a)))))

(686) :

⊢ ¬ (b⁻¹ o b) o p = p o b⁻¹ o b → (pos (s) → (b ⊢ s → (a ⊢ s → (a ⊢ s → ¬ p = a⁻¹ → p = a⁻¹ o a)))))

(516) :

⊢ p ⊢ s → (¬ (b⁻¹ o b) o p = p o b⁻¹ o b → (pos (s) → (b ⊢ s → (b ⊢ s → (pos (s) → (b ⊢ s → p ⊢ s)))))

×

(684) :

S.243

⊢ p ⊢ s → (pos (s) → (pos (s) → (b ⊢ s → (b⁻¹ o b) o p = p o b⁻¹ o b)))

(IIIb) :

⊢ ¬ q o p = p o q → (p ⊢ s → (b ⊢ s → (b ⊢ s → ¬ q = b⁻¹ o b)))]

(If) :

⊢ ¬ q o p = p o q → (p ⊢ s → (b ⊢ s → (b ⊢ s → (b ⊢ s → ¬ q = b⁻¹ o b)))

(β) :

∀ q [¿ q ⊢ s → (¬ p = q⁻¹ → p = q⁻¹ o q)]

(δ) :

(586) :

⊢ p ⊢ s → (¬ p ⊢ s → (pos (s) → (b ⊢ s → (b ⊢ s → (b ⊢ s → ¬ p = a⁻¹ → p = a⁻¹ o a)))))

(ζ) :

(684) :

S.243

⊢ p ⊢ s → (pos (s) → (b ⊢ s → (b⁻¹ o b) o p = p o b⁻¹ o b))

(688)

(IIIb) :

⊢ ¬ q o p = p o q → (p ⊢ s → (b ⊢ s → (b ⊢ s → ¬ q = b⁻¹ o b)))

(If) :

⊢ ¬ q o p = p o q → (p ⊢ s → (b ⊢ s → (b ⊢ s → (b ⊢ s → ¬ q = b⁻¹ o b)))

(α) :

If
\[\vdash \neg q = b^{-1} \rightarrow (\neg q \circ p = p \circ q \rightarrow (p \circ \delta s \rightarrow (\text{pos} (s) \rightarrow \neg q \circ p = p \circ q \rightarrow (p \circ \delta s \rightarrow \text{pos} (s) \rightarrow \neg q = b^{-1} \rightarrow q = b^{-1} \circ b)))) \]

\[(\beta) \]

\[(683) : \quad \neg q \circ p = p \circ q \rightarrow (p \circ \delta s \rightarrow \text{pos} (s) \rightarrow (b \circ s \rightarrow (\neg q = b^{-1} \rightarrow q = b^{-1} \circ b))) \]

\[(\gamma) \]

\[\neg q \circ p = p \circ q \rightarrow (p \circ \delta s \rightarrow \text{pos} (s) \rightarrow (\forall q [q \circ s \rightarrow (\neg q = q^{-1} \rightarrow q = q^{-1} \circ q)]) \]

\[(\delta) \]

\[(516) : \quad (q \circ \delta s \rightarrow (\neg q \circ p = p \circ q \rightarrow (p \circ \delta s \rightarrow (\text{pos} (s) \rightarrow q \circ p = p \circ q))) \]

\[(\varepsilon) \]

\[(680) : \quad (q \circ \delta s \rightarrow (p \circ \delta s \rightarrow (\text{pos} (s) \rightarrow q \circ p = p \circ q)) \]

\[(689) \]

Anmerkung zu § 175, S. 172, erste Spalte.

Anhänge.

1. Tafel der Definitionen.

\[\forall \alpha \in \mathcal{E} \cap \mathcal{K} \quad (\mathcal{G} \circ \mathcal{E} \circ \mathcal{A}) \quad (\mathcal{L} \circ \mathcal{G} \circ \mathcal{E} \circ \mathcal{A}) \]

(Verbindung von Relationen. § 37, S. 48.)

\[\forall t \in \mathcal{E} \cap \mathcal{K} \quad (\mathcal{G} \circ \mathcal{E} \circ \mathcal{A}) \quad (\mathcal{L} \circ \mathcal{G} \circ \mathcal{E} \circ \mathcal{A}) \]

(§ 193, S. 187.)

\[\text{Arch}^p := \exists t \in \mathcal{E} \cap \mathcal{K} \quad (\mathcal{G} \circ \mathcal{E} \circ \mathcal{A}) \quad (\mathcal{L} \circ \mathcal{G} \circ \mathcal{E} \circ \mathcal{A}) \]

(§ 193, S. 187.)

\[\text{Pos}^p := \exists t \in \mathcal{E} \cap \mathcal{K} \quad (\mathcal{G} \circ \mathcal{E} \circ \mathcal{A}) \quad (\mathcal{L} \circ \mathcal{G} \circ \mathcal{E} \circ \mathcal{A}) \]

(§ 193, S. 187.)

\[\text{Grenze} \quad \text{Positivklasse. § 175, S. 171.} \]

\[\text{Positivklasse. § 197, S. 190.} \]
2. Tafel der wichtigeren Lehrsätze.

\[\vdash \text{ext} \alpha \text{ext} \varepsilon (\neg g(\varepsilon, \alpha)) = q \rightarrow (\text{ext} \alpha \text{ext} \varepsilon (\neg f(\varepsilon, \alpha)) = p) \rightarrow (\forall a \forall d [\neg d \varepsilon (a \varepsilon p)] = (\neg d \varepsilon (a \varepsilon q))] \rightarrow p = q) \]

\[\vdash \forall a \forall d [(\neg \varepsilon (a \varepsilon (r \circ p))) = (\neg \varepsilon (a \varepsilon (t \circ s))] \rightarrow r \circ p = t \circ s \]

\[\vdash (t \circ q) \circ p = t \circ q \circ p \]

(Das associative Gesetz für die Zusammensetzung von Relationen.)

\[\vdash F(t \circ q \circ p) \rightarrow F((t \circ q) \circ p) \]

\[\vdash F((t \circ q) \circ p) \rightarrow F(t \circ q \circ p) \]

\[\vdash f((q \circ p)^{-1}) \rightarrow f(p^{-1} \circ q^{-1}) \]

\[\vdash F((q \circ p)^{-1} \circ t) \rightarrow F(p^{-1} \circ q^{-1} \circ t) \]

\[\vdash f(p^{-1} \circ q^{-1}) \rightarrow f((q \circ p)^{-1}) \]

\[\vdash F(p^{-1} \circ q^{-1} \circ t) \rightarrow F((q \circ p)^{-1} \circ t) \]

\[\vdash \varepsilon \varepsilon (r \varepsilon <_q) \rightarrow \forall \varepsilon [\neg \varepsilon \varepsilon (\varepsilon \varepsilon q)] \]

\[\vdash r \varepsilon (a \varepsilon <_q) \rightarrow (n \varepsilon (r \varepsilon <_q) \rightarrow n \varepsilon (a \varepsilon \leq_q)) \]

\[\vdash n \varepsilon (r \varepsilon <_q) \rightarrow (m \varepsilon (n \varepsilon \leq_q) \rightarrow m \varepsilon (r \varepsilon \leq_q)) \]

\[\vdash d \varepsilon z \rightarrow (d \varepsilon (a \varepsilon q) \rightarrow d \varepsilon (a \varepsilon (q^{-1} |z|^{-1}))) \]

\[\vdash e \varepsilon (a \varepsilon (q^{-1} |z|^{-1})) \rightarrow e \varepsilon (a \varepsilon q) \]

\[\vdash \text{funk} (q) \rightarrow \text{funk} ((q^{-1} |z|^{-1})) \]

\[\vdash \text{funk} (q) \rightarrow (m \varepsilon (d \varepsilon \leq_q) \rightarrow (\neg d \varepsilon (d \varepsilon <_q) \rightarrow m \varepsilon (zw_{(m,d)}^q))) \]
\[
\begin{align*}
\vdash n \circ (a \circ p) & \rightarrow (\neg a \circ (a \circ <_p) \rightarrow (e \circ (zw^P_{(m,n)})) \\
\vdash \text{funk} (p) & \rightarrow (\neg m \circ (m \circ <_p) \rightarrow m \circ (zw^P_{(m,n)})) \\
\vdash a \circ v & \rightarrow (x \circ (a \circ \leq_q) \\
\forall e \circ (a \circ (v \circ q)) & \rightarrow (\forall [e \circ (a \circ (v \circ q))] \rightarrow x \circ (a \circ (v \circ q))) \\
\forall e \circ (y \circ \leq_q) & \rightarrow (\forall a [\neg x \circ (a \circ (v \circ q))] \rightarrow \forall e \circ (x \circ (zw^q_{(x,y)}))) \\
\forall a [\neg x \circ (a \circ (v \circ q))] & \rightarrow (\text{funk} (q) \rightarrow (\neg y \circ (y \circ \leq_q) \rightarrow (y \circ v \rightarrow \neg x \circ (y \circ \leq_q)))) \\
\vdash x \circ (m \circ (v \circ q)) & \rightarrow x \circ (m \circ (\leq_q^{_{v'}})) \\
\vdash x \circ (m \circ (v \circ q)) & \rightarrow x \circ (m \circ \leq_q) \\
\vdash x \circ (m \circ (v \circ q)) & \rightarrow x \circ m \\
\vdash \text{funk} (q) & \rightarrow (x \circ (c \circ (\leq_q^{_{v'}})) \\
(x \circ (m \circ (v \circ q)) & \rightarrow m \circ (c \circ \leq_q)) \\
\vdash r \circ v & \rightarrow (b \circ (r \circ \leq_q) \rightarrow (r \circ (a \circ \leq_q) \rightarrow \neg b \circ (a \circ (v \circ q)))) \\
\vdash d \circ (a \circ (v \circ q)) & \rightarrow d \circ (a \circ (\leq_q^{_{v'}})) \\
\vdash d \circ (a \circ (v \circ q)) & \rightarrow d \circ (a \circ \leq_q) \\
\vdash d \circ (a \circ (v \circ q)) & \rightarrow a \circ v \\
\vdash r \circ (zw^P_{(m,n)}) & \rightarrow r \circ (n \circ \leq_q) \\
\vdash n \circ (a \circ (\leq_q^{_{v'}})) & \rightarrow (\neg n \circ (a \circ (\leq_q \circ \leq_q^{_{v'}})) \rightarrow n \circ (a \circ (v \circ q))) \\
\vdash a \circ v & \rightarrow (n \circ (a \circ \leq_q) \\
(\forall [e \circ (a \circ \leq_q) \rightarrow (\neg n \circ (e \circ (\leq_q^{_{v'}})) \rightarrow n \circ (a \circ (v \circ q))]))
\end{align*}
\]
\[\vdash x \circ (y \circ \langle v, \delta q \rangle) \rightarrow x \circ (y \circ \langle v, \delta q \rangle)\] (387)

\[\vdash x \circ (y \circ \langle v, \delta q \rangle) \rightarrow x \circ (y \circ \langle v, \delta q \rangle)\] (388)

\[\vdash \neg a \circ (a \circ \langle v, \delta q \rangle) \rightarrow \neg a \circ (a \circ \langle v, \delta q \rangle)\] (389)

\[\vdash e \circ (d \circ \langle v, \delta q \rangle) \rightarrow (e \circ (a \circ (v \circ \delta q))) \rightarrow \neg d \circ (a \circ \langle v, \delta q \rangle)\] (395)

\[\vdash \text{funk}(q) \rightarrow \text{funk}(v \circ \delta q)\] (397)

\[\vdash m \circ (d \circ \langle v, \delta q \rangle) \rightarrow m \circ (d \circ \langle v, \delta q \rangle)\] (409)

\[\vdash \forall a [a \circ v \rightarrow a \circ u] \rightarrow (\forall \alpha [a \circ v \rightarrow a \circ u] \rightarrow \text{anz}(0) \circ (\text{anz}(v) \circ \leq_{\text{nf}}))\] (428)

\[\vdash \text{anz}(0) \circ (\text{anz}(u) \circ \leq_{\text{nf}}) \rightarrow (\forall \alpha [a \circ v \rightarrow a \circ u] \rightarrow \text{anz}(0) \circ (\text{anz}(v) \circ \leq_{\text{nf}}))\] (443)

\[\vdash e \circ (a \circ q) \rightarrow e \circ (a \circ (q \cup p))\] (455)

\[\vdash e \circ (a \circ p) \rightarrow e \circ (a \circ (q \cup p))\] (456)

\[\vdash e \circ (d \circ (q \cup p)) \rightarrow (\neg e \circ (d \circ p) \rightarrow e \circ (d \circ q))\] (460)

\[\vdash (q \cup p)^{-1} = q^{-1} \cup p^{-1}\] (464)

\[\vdash \forall a [a \circ w \rightarrow \neg a \circ u] \rightarrow (\forall \alpha [a \circ v \rightarrow \neg a \circ z] \rightarrow (\text{anz}(v) = \text{anz}(w) \rightarrow (\text{anz}(z) = \text{anz}(u) \rightarrow \text{anz}(\text{ext} \circ (\neg e \circ v \rightarrow e \circ z)) = \text{anz}(\text{ext} \circ (\neg e \circ w \rightarrow e \circ u))))))\] (469)

\[\vdash \neg \forall a [\neg \text{anz}(w) \circ (a \circ \text{nf})]\] (480)

\[\vdash \text{anz}(u) = \infty \rightarrow (\forall a [a \circ u \rightarrow a \circ w] \rightarrow \neg \text{anz}(0) \circ (\text{anz}(w) \circ \leq_{\text{nf}}))\] (484)

\[\vdash F(d \circ (a \circ t)) \rightarrow F(d \circ t = a)\] (492)

\[\vdash d \circ (a \circ t) \rightarrow (F(d \circ t) \rightarrow F(a))\] (493)

\[\vdash F(d \circ t = a) \rightarrow F(d \circ (a \circ t))\] (495)

\[\vdash d \circ (d \circ t \circ a)\] (496)
\[
\begin{align*}
\vdash & \text{funk}(s \cdot t) \\
\vdash & t \cdot (p \cdot s) \leq_s t \Rightarrow t \circ p = p \circ t \\
\vdash & t \cdot (q \cdot s) \leq_s t \Rightarrow (t \cdot (p \cdot s) \leq_s t) \Rightarrow q \circ p = p \circ q \\
\vdash & d \cdot (a \cdot s \cdot p) \Rightarrow b \circ d \cdot (b \cdot a \cdot s \cdot p) \\
\vdash & p \cdot s \rightarrow (\forall q \cdot [q \circ s \rightarrow \neg (\neg p = q^{-1} \rightarrow p = q^{-1} \circ q)]) \Rightarrow p \cdot s)
\end{align*}
\]
\[\vdash \text{posval} (s) \rightarrow (p \circ s \rightarrow (p^{-1} \circ q \circ s \rightarrow \neg q^{-1} \circ p \circ s)) \] (589)

\[\vdash q \circ (t \circ s) \leq p \rightarrow (\text{posval} (s) \rightarrow (p \circ s \rightarrow (q \circ s \rightarrow t \circ s))) \] (623)

\[\vdash p \circ s \rightarrow (\neg q \circ p^{-1} \circ s \rightarrow (\text{posval} (s) \rightarrow (q \circ s \rightarrow (\neg p \circ q^{-1} \circ s \rightarrow p = q)))) \] (639)

\[\vdash b \circ s \rightarrow (p \circ s \rightarrow \forall a [a \circ s \rightarrow \neg ((c^{-1} \circ d) \circ a \circ s \rightarrow \neg (d^{-1} \circ c) \circ a \circ s)] \rightarrow \text{posval} (s) \rightarrow c = d)) \] (644)

\[\vdash p \circ s \rightarrow (\text{posval} (s) \rightarrow (c \circ s \rightarrow (\neg e^{-1} \circ p \circ s \rightarrow (b^{-1} \circ p \circ s \rightarrow b^{-1} \circ e \circ s)))) \] (671)

\[\vdash \forall a [a \circ s \rightarrow (a^{-1} \circ c \circ s \rightarrow a \circ u) \rightarrow c \circ (s \circ u)] \] (590)

\[\vdash e \circ (s \circ u) \rightarrow (a \circ s \rightarrow (a^{-1} \circ c \circ s \rightarrow a \circ u)) \] (591)

\[\vdash e \circ (s \circ u) \rightarrow (c \circ s \rightarrow (p^{-1} \circ e \circ s \rightarrow \neg p \circ (\text{grenz}_u^w))) \] (594)

\[\vdash p \circ (\text{grenz}_u^w) \rightarrow (a \circ s \rightarrow (a^{-1} \circ p \circ s \rightarrow a \circ u)) \] (597)

\[\vdash \forall e [e \circ s \rightarrow (p^{-1} \circ e \circ s \rightarrow \neg e \circ (s \circ u))] \rightarrow (p \circ (s \circ u) \rightarrow (p \circ s \rightarrow p \circ (\text{grenz}_u^w))) \] (601)

\[\vdash p \circ (\text{grenz}_u^w) \rightarrow \text{posval} (s) \] (600)

\[\vdash p \circ (\text{grenz}_u^w) \rightarrow (q \circ (\text{grenz}_u^w) \rightarrow p = q) \] (602)

\[\vdash \text{pos} (s) \rightarrow (\forall e [e \circ s \rightarrow \neg c^{-1} \circ a \circ s] \rightarrow \neg a \circ s) \] (606)

\[\vdash e \circ (s \circ u) \rightarrow (a \circ s \rightarrow (a^{-1} \circ c \circ s \rightarrow a \circ u)) \] (591)

\[\vdash e \circ (s \circ u) \rightarrow (c \circ s \rightarrow (p^{-1} \circ e \circ s \rightarrow \neg p \circ (\text{grenz}_u^w))) \] (594)

\[\vdash p \circ (\text{grenz}_u^w) \rightarrow (a \circ s \rightarrow (a^{-1} \circ p \circ s \rightarrow a \circ u)) \] (597)

\[\vdash p \circ (\text{grenz}_u^w) \rightarrow p \circ s \] (599)
Nachwort.

Einem wissenschaftlichen Schriftsteller kann kaum etwas Unerwünschteres begegnen, als dass ihm nach Vollendung einer Arbeit eine der Grundlagen seines Baues erschüttert wird.

In diese Lage wurde ich durch einen Brief des Herrn Bertrand Russell versetzt, als der Druck dieses Bandes sich seinem Ende näherte. Es handelt sich um mein Grundgesetz (V).

Solatium miseris, socios habuisse malorum. Dieser Trost, wenn es einer ist, steht auch mir zur Seite; denn Alle, die von Begriffsumfängen, Klassen, Mengen in ihren Beweisen Gebrauch gemacht haben, sind in derselben Lage. Es handelt sich hierbei nicht um meine Begründungsweise im Besonderen, sondern um die Möglichkeit einer logischen Begründung der Arithmetik überhaupt.

Doch zur Sache selbst! Herr Russell hat einen Widerspruch aufgefunden, der nun dargelegt werden mag.

Von der Klasse der Menschen wird niemand behaupten wollen, dass sie ein Mensch sei. Wir haben hier eine Klasse, die sich selbst nicht an- gehört. Ich sage nämlich, etwas gehöre einer Klasse an, wenn es unter den Begriff fällt, dessen Umfang eben die Klasse ist. Fassen wir nun den Begriff ins Auge Klasse, die sich selbst nicht angehört! Der Umfang dieses Begriffes, falls man von ihm reden darf, ist demnach die Klasse der sich selbst nicht angehörenden Klassen. Wir wollen sie kurz die Klasse K nennen. Fragen wir nun, ob diese Klasse K sich selbst angehöre! Nehmen wir zuerst an, sie thue es! Wenn etwas einer Klasse angehört, so fällt es unter den Begriff, dessen Umfang die Klasse ist. Wenn demnach unsere Klasse sich selbst angehört, so fällt sie unter den Begriff, dessen Umfang die Klasse ist. Wenn demnach unsere Klasse sich selbst angehört, so ist sie eine Klasse, die sich selbst nicht angehört. Unsere erste Annahme führt also auf einen Widerspruch mit sich. Nehmen wir zweitens an, unsere Klasse K gehöre sich selbst nicht an, so fällt sie unter den Begriff, dessen Umfang sie selbst ist, gehört also sich selbst an. Auch hier wieder ein Widerspruch!

100 Auch die Systeme des Herrn K. Dedekind gehören hierher.
heit annähme. Aber das ist wohl ausgeschlossen. Die Identität ist eine so bestimmt gegebene
Beziehung, dass nicht abzusehen ist, wie bei ihr verschiedene Arten vorkommen können. Nun
ergäbe sich aber eine große Mannigfaltigkeit von Functionen erster Stufe, nämlich erstens
solche, welche als Argumente nur eigentliche Gegenstände haben dürften, zweitens solche,
welche als Argumente sowohl eigentliche, als auch uneigentliche Gegenstände haben könnten,
eden wohl wohl auch solche, welche nur uneigentliche Gegenstände als Argumente haben
können. Eine andere Eintheilung ergäbe sich aus den Werthen der Functionen. | Danach
wären Functionen zu unterscheiden, welche als Werthe nur eigentliche Gegenstände hätten,
zweitens solche, welche als Werthe sowohl eigentliche, als auch uneigentliche Gegenstän
de hätten, endlich solche, welche nur uneigentliche Gegenstände als Werthe hätten. Beide
Einteilungen der Functionen erster Stufe bestünden gleichzeitig, sodass man neun Arten erhie
Itelte. Diesen entsprächen wieder neun Arten von Werthverläufen, uneigentlichen Gegen
ständen, die logisch zu unterscheiden wären. Die Klassen eigentlicher Gegenstände müssten
den von den Klassen von Klassen eigentlicher Gegenstände unterschieden werden, die Relationen
zwischen eigentlichen Gegenständen von den Klassen eigentlicher Gegenstände, von den
Klassen von Relationen zwischen eigentlichen Gegenständen u. s. w. So erhielten wir eine
unabsehbare Mannigfaltigkeit von Arten; und im Allgemeinen könnten Gegenstände, die ver
schiedenen dieser Arten angehörten, nicht als Argumente derselben Functionen auftreten. Es
scheint aber ausserordentlich schwierig zu sein, eine vollständige Gesetzgebung aufzustellen,
durch die allgemein entschieden würde, welche Gegenstände als Argumente welcher Functionen
zulässig wären. Ueberdies kann die Berechtigung uneigentlicher Gegenstände bezweifelt
werden. Wenn uns diese Schwierigkeiten davon abschrecken, die Klassen und damit die Zahlen als
eigentliche Gegenstände aufzufassen, wenn wir sie aber auch nicht als eigentliche Gegen
stände anerkennen wollen, nämlich als solche, welche als Argumente jeder Function erster
Stufe auftreten können, so bleibt wohl nur übrig, die Klassennamen als Scheineigennamen zu
betrachten, die also in Wahrheit keine Bedeutung hätten. Sie wären dann anzusehen als Thei
le von Zeichen, die nur als Ganze eine Bedeutung hätten. Man kann es ja für irgendeinen
Zweck vortheilhaft erachten, verschiedene Zeichen in einem Theile übereinstimmend zu ge
stalten, ohne sie dadurch zu zusammengesetzten zu machen. Die Einfachheit eines Zeichens erf
ordert ja nur, dass die Theile, die man in ihnen etwa unterscheiden kann, nicht selbständig
eine Bedeutung haben. Auch das, was wir als Zahlzeichen aufzufassen gewohnt sind, wäre
dann eigentlich kein Zeichen, sondern der unselbständige Theil eines Zeichens. Eine Erklä
rung des Zeichens »2« wäre unmöglich; man hätte statt dessen viele Zeichen zu erklären, die
al unselbständigen Bestandtheil »2« enthielten, aber logisch nicht aus »2« und einem andern
Theile zusammengesetzt zu denken wären. Es wäre dann unzulässig, einen solchen unselb
ständigen Theil durch einen Buchstaben vertreten zu lassen; denn hinsichtlich des Inhalts
bestände ja gar keine Zusammensetzung. Die Allgemeinheit der arithmetischen Sätze ginge
damit verloren. Auch wäre nicht zu verstehen, wie dabei von einer Anzahl von Klassen, von
einer Anzahl von Anzahlen die Rede sein könnte.
Ich denke: dies genügt, um auch diesen Weg als ungangbar erscheinen zu lassen. Es bleibt
also wohl nichts anderes übrig, als die Begriffssum- [flange oder Klassen als Gegenstände im
eigentlichen und vollen Sinne dieses Wortes anzuerkennen, zugleich aber einzuräumen, dass
die bisherige Auffassung der Worte „Umfang eines Begriffes“ einer Berichtigung bedarf.
Bevor wir hierauf näher eingehen, wird es nützlich sein, dem Auftreten jenes Widerspruchs
mit unsren Zeichen nachzuspüren. Dann Δ eine Klasse ist, die sich selbst nicht angehört,
können wir so ausdrücken:
\[\neg \forall g [\text{ext } (\neg g(e)) = \Delta \rightarrow g(\Delta)] \]

Und die Klasse der sich selbst nicht angehörenden Klassen wird so zu bezeichnen sein:

\[\text{ext } \varepsilon (\neg \forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = \varepsilon \rightarrow g(\varepsilon)]) \]

Ich will zur Abkürzung dafür in der folgenden Ableitung das Zeichen »\(H \)« gebrauchen und dabei wegen der zweifelhaften Wahrheit den Urtheilsstrich weglassen. Demnach werde ich mit

\[\neg\forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \]

ausdrücken, dass die Klasse \(H \) sich selbst angehöre.

Nach (Vb) haben wir nun

\[\text{ext } \varepsilon (\neg f(\varepsilon)) = \text{ext } \varepsilon (\neg \forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = \varepsilon \rightarrow g(\varepsilon)]) \rightarrow \]

\[(\neg f(H)) = \neg \forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \]

oder, wenn wir die Abkürzung benutzen und (IIIa) anwenden

\[\neg\forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \rightarrow (\text{ext } \varepsilon (\neg f(\varepsilon)) = H \rightarrow f(H)) \]

(\(\alpha \))

Nun führen wir für »\(f \)« das deutsche »\(g \)« ein:

\[\neg\forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \rightarrow \forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \]

(\(\beta \))

d. h.: Wenn \(H \) sich angehört, gehört es sich nicht an. Das ist die eine Seite.

Andrerseits haben wir nach (IIb)

\[\forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \rightarrow (\text{ext } \varepsilon (\neg f(\varepsilon)) = H \rightarrow f(H)) \]

(\(\gamma \))

und wenn wir für »\(f(\xi) \)« nehmen

\[\neg\forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = \xi \rightarrow g(\xi)] \]

\[\forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \rightarrow (\text{ext } \varepsilon (\neg \forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = \varepsilon \rightarrow g(\varepsilon)]) = H \rightarrow \]

\[\neg\forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \]

(\(\delta \))

und mit Berücksichtigung unserer Abkürzung:

\[\forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \rightarrow \forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \]

(\(\varepsilon \))

d. h.: Wenn \(H \) sich nicht angehört, so gehört es sich an. Aus (\(\varepsilon \)) folgt nach (Ig) [S.257]

\[\neg\forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \]

(\(\zeta \))

und hieraus mit (\(\beta \))

\[\forall g [\text{ext } \varepsilon (\neg g(\varepsilon)) = H \rightarrow g(H)] \]

(\(\eta \))

Die Sätze (\(\zeta \)) und (\(\eta \)) widersprechen einander. Der Fehler kann allein in unserm Gesetze (Vb) liegen, das also falsch sein muss.

Wir wollen nun sehen, wie sich die Sache gestaltet, wenn wir unser Zeichen »\(d \)« benutzen. An die Stelle von »\(H \)« wird »\(\text{ext } (\neg \varepsilon \varepsilon) \)« treten. Indem wir in (82) für »\(f(\xi) \)«

\[\neg \xi \varepsilon \xi \varepsilon, \text{ für } F(\xi) \varepsilon \rightarrow \xi \varepsilon \text{ und für } \alpha \rightarrow \exists \varepsilon \exists \varepsilon \text{ nehmen, erhalten wir } \]

\[\text{ext } (\neg \varepsilon \varepsilon) \varepsilon \text{ ext } (\neg \varepsilon \varepsilon) \rightarrow \neg \text{ ext } (\neg \varepsilon \varepsilon) \varepsilon \text{ ext } (\neg \varepsilon \varepsilon) \]

(\(\iota \))

woraus nach (Ig) folgt

\[\neg \text{ ext } (\neg \varepsilon \varepsilon) \varepsilon \text{ ext } (\neg \varepsilon \varepsilon) \]

(\(\iota \))

Durch dieselben Einsetzungen erhalten wir aus (77):

\[\neg \text{ ext } (\neg \varepsilon \varepsilon) \varepsilon \text{ ext } (\neg \varepsilon \varepsilon) \rightarrow \text{ ext } (\neg \varepsilon \varepsilon) \varepsilon \text{ ext } (\neg \varepsilon \varepsilon) \]

(\(\kappa \))

Hieraus folgt mit (\(\iota \))

\[\text{ext } (\neg \varepsilon \varepsilon) \varepsilon \text{ ext } (\neg \varepsilon \varepsilon) \]

(\(\lambda \))

was dem (\(\iota \)) widerspricht. Es wird also mindestens einer der beiden Sätze (77) und (82) falsch sein, und also auch (1), aus dem sie folgen. Bei der Betrachtung der Ableitung von (1) im § 55 des ersten Bandes ergibt sich, dass auch dabei von (Vb) Gebrauch gemacht ist. Auf diesen

Satz wird also auch hier der Verdacht gelenkt. Mit (Vb) ist auch (V) selbst gefallen, nicht aber (Va). Der Umwandlung der Allgemeinheit einer Gleichheit in eine Werthverlaufsgleichheit steht nichts im Wege; nur die umgekehrte Umwandlung ist als nicht immer erlaubt nachgewiesen. Damit ist freilich erkannt, dass meine Einführung der Werthverläufe im § 3 des ersten Bandes nicht immer zulässig ist. Wir können nicht allgemein die Worte „die Function Φ(ξ) hat denselben Werthverlauf wie die Function Ψ(ξ)“ als gleichbedeutend mit den Werten „die Functionen Φ(ξ) und Ψ(ξ) haben für dasselbe Argument immer denselben Werth“, und wir müssen die Möglichkeit in Betracht ziehen, dass es Begriffe gebe, die — im gewöhnlichen Wortsinne wenigstens — keinen Umfang haben. Die Berechtigung unserer Function zweiter Stufe \(\text{ext} \varepsilon (\phi(\varepsilon))\) wird dadurch erschüttert. Und doch ist eine solche für die Begründung der Arithmetik unentbehrlich.

Wir wollen unsere Untersuchung nun noch dadurch ergänzen, dass wir, statt von (Vb) auszugehen und so auf einen Widerspruch zu stossen, die Falschheit von (Vb) als Endergebnis gewinnen. Um dabei von den immerhin verdächtigen Werthverlaufzeichen unabhängig zu sein, wollen wir die Ableitung ganz allgemein für eine Function zweiter Stufe mit einem Argument zweiter Art durchführen, indem wir die Bezeichnungsweise in Bd. I, § 25 benutzen. Unsere Zeichenverbindung

\[
\text{ext} \varepsilon (\sim \forall g [\text{ext} \varepsilon (\sim g(\varepsilon)) = \varepsilon \rightarrow g(\varepsilon)]) \quad \text{«}
\]

wird demgemäß ersetzt werden durch

\[
M_\beta (\sim \forall g [M_\beta (\sim g(\beta)) = \beta \rightarrow g(\beta)]) \quad \text{«}
\]

und auf diesen Fall sind die Bestimmungen, die wir bei den Werthverlaufzeichen in I, § 9 über das Gebiet eines griechischen Buchstabens aufgestellt haben, sinngemäß zu übertragen. Wir haben in unserer Formel zweimal ein \(M\), erstens im Anfange, zweitens im Innern. An der Argumentstelle des ersten steht die Functionsmarke \(\sim \forall g [M_\beta (\sim g(\beta)) = \xi \rightarrow g(\xi)]\), an der des zweiten steht \(\sim g(\xi)\). Zunächst ergiebt sich Folgendes:

\[
\begin{align*}
\vdash \forall g [M_\beta (\sim g(\beta)) = a \rightarrow g(\alpha)] \rightarrow \\
(M_\beta (\sim \forall g [M_\beta (\sim g(\beta)) = \beta \rightarrow g(\beta)]) = a \rightarrow \\
\sim \forall g [M_\beta (\sim g(\beta)) = a \rightarrow g(\alpha)]) \\
\times \\
\vdash \forall g [M_\beta (\sim g(\beta)) = a \rightarrow g(\alpha)] \\
\sim M_\beta (\sim \forall g [M_\beta (\sim g(\beta)) = \beta \rightarrow g(\beta)]) = a \quad (\mu) \\
\times \\
\vdash M_\beta (\sim \forall g [M_\beta (\sim g(\beta)) = \beta \rightarrow g(\beta)]) = a \rightarrow \\
\sim \forall g [M_\beta (\sim g(\beta)) = a \rightarrow g(\beta)] \quad (\nu)
\end{align*}
\]

Setzen wir hierin zur Abkürzung

\[
\begin{align*}
\Phi(\xi) \times \\
\text{für} \\
\sim \forall g [M_\beta (\sim g(\beta)) = \xi \rightarrow g(\xi)] \times
\end{align*}
\]

\[103\]Bd. I, § 23, S. 40.
und setzen wir für \(\alpha\) \(\alpha \vee \beta\), so erhalten wir aus \(\nu\)

\[
\Phi(M_\beta(\Phi(\beta)))
\]

d. h. der Werth unserer Function zweiter Stufe für den Begriff \(\Phi(\xi)\) fällt unter eben diesen Begriff. Andrerseits haben wir aber auch aus \(\nu\)

\[
\neg \forall \beta \ [M_\beta(-\beta) = M_\beta(\Phi(\beta)) \rightarrow \beta(\Phi(\beta))]
\]

d. h.: Es gibt einen Begriff, für welchen als Argument unsere Function zweiter Stufe denselben Werth erhält wie für \(\Phi(\xi)\), unter welchen dieser Werth aber nicht fällt. Mit andern Worten: Für jede Function zweiter Stufe mit einem Argument zweiter Art gibt es zwei Begriffe der Art, dass sie, als Argumente dieser Function genommen, denselben Werth ergeben, und dass dieser Werth zwar unter den ersten dieser \(\Phi(\xi)\) Begriffe fällt, nicht aber unter den zweiten.

Begriffsschriftlich können wir das so ableiten:

\[
\nu \vdash M_\beta(-\beta) = \beta \rightarrow \beta(\beta)
\]

\[
\neg \forall \beta \ [M_\beta(-\beta) = \beta \rightarrow \beta(\beta)]
\]

\[
\beta(\beta) = \beta \rightarrow \beta(\beta)
\]

\[
(IIa) : \quad (IIb) :: \quad (IIb, IIIa) :: \quad (IIa, IIIa) :: \quad (IIa) :: \quad (IIa) ::
\]

\[
(\mu) : \quad (\sigma) : \quad (\tau) : \quad (\nu) : \quad (\lambda)
\]

\[
(\xi) : \quad (\pi) : \quad (\rho)
\]

\[
(\eta) : \quad (\kappa) : \quad (\theta) : \quad (\phi) : \quad (\psi) : \quad (\omega)
\]

\[
\mathrm{S.} \, 259
\]
genstände, die unter den einen dieser Begriffe fallen, auch unter den andern fallen.

welche, als deren Argumente genommen, denselben Werth ergeben, obwohl nicht alle Ge-
d. h.: Für jede Function zweiter Stufe mit einem Argumente zweiter Art giebt es Begriffe,
unter den einen von ihnen fallende Gegenstand auch unter den andern fallen.

mein aus der Gleichheit des Umfanges von Begriffen geschlos sen werden könne, dass jeder
worden, so kommt der Fall vor, dass Begriffe denselben Umfa

ext

Stufe

Berechtigung irgendwie zweifelhaft wäre. Unser Satz gilt a lso auch für die Function zweiter

Falls allgemein bei jedem Begriffe erster Stufe von dessen Umfange gesprochen wer-
den darf, so kommt der Fall vor, dass Begriffe denselben Umfange haben, obwohl nicht alle

Genstände, die unter den einen dieser Begriffe fallen.

Unser Beweis ist geführt worden ohne Benutzung von Sätzen od er Bezeichnungen, deren

Begründung irgendwie zweifelhaft wäre. Unser Satz gilt also auch für die Function zweiter

Stufe ext ε (φ(c)), falls diese zulässig ist, oder in Worte:

Falls allgemein bei jedem Begriffe erster Stufe von dessen Umfange gesprochen wer-
den darf, so kommt der Fall vor, dass Begriffe denselben Umfange haben, obwohl nicht alle Gen-

stände, die unter den einen dieser Begriffe fallen, auch unter den andern fallen.

Damit ist aber der Begriffsumfang im hergebrachten Sinne des Wortes eigentlich auf-

gehoben. Man darf | nicht sagen, dass allgemein der Ausdruck „der Umfang eines ersten

Begriffes fällt zusammen mit dem eines zweiten“ gleichbedeutend sei mit dem Ausdruck „alle unter

den ersten Begriff fallenden Gegenstände fallen auch unter den zweiten und um-

gekehrt“. Wir sehen aus dem Ergebnisse unserer Ableitung, dass es gar nicht möglich ist, mit

d. h.: Für jede Function zweiter Stufe mit einem Argumente zweiter Art gibt es Begriffe,
welche, als deren Argumente genommen, denselben Werth ergeben, obwohl nicht alle Ge-

Genstände, die unter den einen dieser Begriffe fallen, auch unter den andern fallen.

Unser Beweis ist geführt worden ohne Benutzung von Sätzen oder Bezeichnungen, deren

Begründung irgendwie zweifelhaft wäre. Unser Satz gilt also auch für die Function zweiter

Stufe ext ε (φ(c)), falls diese zulässig ist, oder in Worte:

Falls allgemein bei jedem Begriffe erster Stufe von dessen Umfange gesprochen wer-
den darf, so kommt der Fall vor, dass Begriffe denselben Umfange haben, obwohl nicht alle Gen-

stände, die unter den einen dieser Begriffe fallen, auch unter den andern fallen.

Damit ist aber der Begriffsumfang im hergebrachten Sinne des Wortes eigentlich auf-

gehoben. Man darf | nicht sagen, dass allgemein der Ausdruck „der Umfang eines ersten

Begriffes fällt zusammen mit dem eines zweiten“ gleichbedeutend sei mit dem Ausdruck „alle unter

den ersten Begriff fallenden Gegenstände fallen auch unter den zweiten und um-

gekehrt“. Wir sehen aus dem Ergebnisse unserer Ableitung, dass es gar nicht möglich ist, mit

d. h.: Für jede Function zweiter Stufe mit einem Argumente zweiter Art gibt es Begriffe,
welche, als deren Argumente genommen, denselben Werth ergeben, obwohl nicht alle Ge-

Genstände, die unter den einen dieser Begriffe fallen, auch unter den andern fallen.

Unser Beweis ist geführt worden ohne Benutzung von Sätzen oder Bezeichnungen, deren

Begründung irgendwie zweifelhaft wäre. Unser Satz gilt also auch für die Function zweiter

Stufe ext ε (φ(c)), falls diese zulässig ist, oder in Worte:

Falls allgemein bei jedem Begriffe erster Stufe von dessen Umfange gesprochen wer-
den darf, so kommt der Fall vor, dass Begriffe denselben Umfange haben, obwohl nicht alle Gen-

stände, die unter den einen dieser Begriffe fallen, auch unter den andern fallen.

Damit ist aber der Begriffsumfang im hergebrachten Sinne des Wortes eigentlich auf-

gehoben. Man darf | nicht sagen, dass allgemein der Ausdruck „der Umfang eines ersten

Begriffes fällt zusammen mit dem eines zweiten“ gleichbedeutend sei mit dem Ausdruck „alle unter

den ersten Begriff fallenden Gegenstände fallen auch unter den zweiten und um-

gekehrt“. Wir sehen aus dem Ergebnisse unserer Ableitung, dass es gar nicht möglich ist, mit

S.261
und setzen wir für $\exists a \exists M_{β}(\left(Ψ(β)\right))$, so erhalten wir aus $(ω)$
\[\neg Ψ(M_{β}(Ψ(β)))\]
d. h. der Werth unserer Function zweiter Stufe für das Argument $Ψ(ξ)$ fällt nicht unter den Begriff $Ψ(ξ)$. Andersseits haben wir aber auch aus $(ω)$
\[\neg \forall g [M_{β}(\neg g(β)) = M_{β}(Ψ(β)) \rightarrow \neg g(M_{β}(Ψ(β)))]\]
d. h.: es gibt einen Begriff, für den als Argument unsere Function zweiter Stufe denselben Werth erhält wie für $Ψ(ξ)$ und unter den dieser Werth fällt. Auch hier haben wir also zwei Begriffe der Art, dass sie, als Argumente der Function zweiter Stufe genommen, denselben Werth ergeben, der nun unter den zweiten dieser Begriffe fällt, nicht aber unter den ersten. Aus dem Satz $(ω)$ können wir in ähnlicher Weise wie aus $(ν)$ den Satz $(χ)$ ableiten.

Versuchen wir nun, die Function $ext \varepsilon (\neg φ(ε))$ als Function zweiter Stufe unserer Sätze zu nehmen! Wir haben dann in
\[\neg \forall g \left[ext \varepsilon (\neg g(ε)) = ξ \rightarrow g(ξ)\right]\]
einen Begriff, unter welchen sein eigener Umfang fällt. Es gibt dann aber nach $(ν)$ einen Begriff, dessen Umfang mit dem eben genannten zusammenfällt, unter welchen dieser Umfang aber nicht fällt. Wir möchten gerne ein Beispiel hierzu haben. Wie ist ein solcher Begriff zu finden? Dies ist nicht möglich ohne genauere Bestimmung unserer Function $ext \varepsilon (\neg φ(ε))$ oder des Begriffsumfanges; denn unser bisheriges Kriterium des Zusammenfalls von Begriffsumfängen lässt uns hier im Stiche.

Wir haben anderseits in
\[\forall g \left[ext \varepsilon (\neg g(ε)) = ξ \rightarrow \neg g(ξ)\right]\]
einen Begriff, unter welchen sein eigener Umfang nicht fällt. Nach $(ω)$ gibt es aber dann einen Begriff, dessen Umfang mit dem des eben genannten zusammenfällt, unter welchen dieser Umfang fällt. Alles dies natürlich unter der Voraussetzung, dass der Functionsname $ext \varepsilon (\neg φ(ε))$ logisch berechtigt ist.

Selbstverständlich kann dies nicht als Definition etwa des Begriffsumfanges angesehen werden, sondern nur als Angabe der kennzeichnenden Beschaffenheit dieser Function zweiter Stufe.

Indem wir das, was wir von den Begriffsumfängen gesagt haben, auf Werthverläufe im Allgemeinen übertragen, gelangen wir zu dem Grundgesetze
\[\vdash ext \varepsilon (f(ε)) = ext α (g(α))\]
\[\forall a \left[\neg \left(\neg a = ext α (g(α)) \rightarrow a = ext \varepsilon (f(ε)) \rightarrow f(α) = g(α)\right)\right]\]
V' das an die Stelle von (V) (I, § 20, S. 36) zu treten hat. Aus diesem Gesetze folgt $(Vα)$. Dagegen muss (Vb) folgenden Sätzen weichen:
\[\vdash ext \varepsilon (f(ε)) = ext α (g(α)) \rightarrow \neg a = ext \varepsilon (f(ε)) \rightarrow f(α) = g(α)\]
$V'b$
oder
\[\vdash ext \varepsilon (f(ε)) = ext α (g(α)) \rightarrow \neg a = ext α (g(α)) \rightarrow f(α) = g(α)\]
$V'c$
Ueberzeugen wir uns nun, dass der früher zwischen den Sätzen $(β)$ und $(ε)$ auftretende Widerspruch jetzt vermieden wird. Wir verfahren wie bei der Ableitung von $(β)$, indem wir
statt (Vb) (V'c) benutzen. »I« sei wieder Abkürzung für
\[\text{ext } \varepsilon (\neg \forall g [\text{ext } \varepsilon (\neg g(e)) = \varepsilon \rightarrow g(e)]) \]
Wir haben nach (V'c)
\[\vdash \text{ext } \varepsilon (\neg f(e)) = \text{ext } \varepsilon (\neg \forall g [\text{ext } \varepsilon (\neg g(e)) = \varepsilon \rightarrow g(e)]) \]
\[(\neg I = \text{ext } \varepsilon (\neg \forall g [\text{ext } \varepsilon (\neg g(e)) = \varepsilon \rightarrow g(e)]) \rightarrow \]
\[(\neg f(I)) = \neg \forall g [\text{ext } \varepsilon (\neg g(e)) = I \rightarrow g(I))] \]
Die Benutzung der Abkürzung ergibt
\[\vdash \text{ext } \varepsilon (\neg f(e)) = \text{ext } \varepsilon (\neg \forall g [\text{ext } \varepsilon (\neg g(e)) = \varepsilon \rightarrow g(e)]) \rightarrow (\neg I = I \rightarrow \]
\[(\neg f(I)) = \neg \forall g [\text{ext } \varepsilon (\neg g(e)) = I \rightarrow g(I))] \]
was selbstverständlich ist wegen des Untergliedes »\neg I = I« und eben deswegen nie auf einen Widerspruch führen kann.

Wir hatten (I, S. 17) festgesetzt, dass der Umfang eines Begriffes, unter den nur das Wahre fällt, das Wahre sein solle, und dass der Umfang eines Begriffes, unter den nur das Falsche fällt, das Falsche sein solle. Diese Bestimmungen erleiden durch die neue Fassung des Begriffsumfanges keine Änderung.

Welchen Einfluss hat nun diese neue Fassung auf die Werthe unser Function ξ, wenn wir die Bestimmungen in I, § 11 festhalten? Nehmen wir an, es sei Φ(ξ) ein leerer Begriff! Dann fiel nach der früheren Fassung des Begriffsumfanges \[\text{ext } \varepsilon (\Phi(\varepsilon)) \] mit \[\text{ext } \varepsilon (\Phi(\varepsilon)) \] zusammen, weil es keinen solchen Gegenstand Δ gab, dass \[\text{ext } \varepsilon (\Delta = \varepsilon) \] mit \[\text{ext } \varepsilon (\Phi(\varepsilon)) \] zusammenfiel. Nach der neuen Fassung des Begriffsumfanges gibt es einen solchen Gegenstand, nämlich \[\text{ext } \varepsilon (\Phi(\varepsilon)) \] selbst. Der Ergebnis ist aber wieder dasselbe, nämlich dass \[\text{ext } \varepsilon (\Phi(\varepsilon)) \] mit \[\text{ext } \varepsilon (\Phi(\varepsilon)) \] zusammenfällt. Dasselbe wird sich ergeben, wenn \[\text{ext } \varepsilon (\Phi(\varepsilon)) \] als einziger Gegenstand unter den Begriff \[\Phi(\xi) \] fällt. Nehmen wir an, unter den Begriff \[\Phi(\xi) \] falle als einziger Gegenstand Δ, so fällt \[\text{ext } \varepsilon (\Phi(\varepsilon)) \] mit Δ zusammen. Dasselbe geschieht auch noch, wenn ausser Δ nur noch \[\text{ext } \varepsilon (\Phi(\varepsilon)) \] unter den Begriff \[\Phi(\xi) \] fällt; und hier findet ein Unterschied von dem Früheren statt; denn in diesem Falle wäre früher \[\text{ext } \varepsilon (\Phi(\varepsilon)) \] nicht mit Δ, sondern mit \[\text{ext } \varepsilon (\Phi(\varepsilon)) \] zusammengefallen. In allen andern Fällen besteht kein Unterschied hinsichtlich der Werthe der Function ξ bei der alten und der neuen Fassung des Begriffsumfanges, und unser Grundgesetz (VI) gilt jetzt wie früher.

Wir müssen nun noch fragen, wie durch die neue Fassung des Werthverlaufs die Werthe unserer Function ξ beeinflusst werden. In dem Falle, dass Γ ein Werthverlauf ist, ist nun nicht mehr in jedem Falle bestimmt, welchen Werth eine Function, deren Werthverlauf Γ ist, für das Argument Θ hat, nämlich dann nicht, wenn Θ mit Γ zusammenfällt. Es kann dann Functionen geben, die denselben Werthverlauf Γ haben, die aber für das Argument Γ verschiedene Werthe haben. Der Umfang des Begriffes
\[\neg \forall g [\Gamma = \text{ext } \varepsilon (g(e)) \rightarrow \neg g(\Gamma)] = \xi \]
nach diesen Δ als einziger Gegenstand, unter jenen aber alle Gegenstände fallen. Denn, wenn Γ ein Werthverlauf und E ein Gegenstand ist, wird es immer möglich sein, eine Function X(Δ) so anzugeben, dass \[\text{ext } \varepsilon (X(\varepsilon)) = \Gamma \] und \[X(\Gamma) = E \] ist. Nach der Festsetzung in I, § 11 fällt dann
\[\text{ext } \alpha (\neg \forall g [\Gamma = \text{ext } \varepsilon (g(e)) \rightarrow \neg g(\Gamma)] = \alpha) \]
mit
\[\text{ext } \alpha (\neg \forall g [\Gamma = \text{ext } \varepsilon (g(e)) \rightarrow \neg g(\Gamma)] = \alpha) \]

\textbf{S.264}
zusammen. Wenn demnach Γ ein Werthverlauf ist, so ist

$$\Gamma \vdash \alpha \left(\neg \forall g \left[\Gamma = \text{ext } \varepsilon \left(g(e) \right) \right] \rightarrow \neg g(\Gamma) = \alpha \right)$$

d. h. $\Gamma \vdash \Gamma$ ist der Umfang eines allumfassenden Begriffes. Wenn Γ kein Werthverlauf ist, so ist $\Gamma \vdash \Gamma$ der Umfang eines leeren Begriffes. Im ersten Falle ist $\neg \Gamma \vdash \Gamma$ das Falsche:

$$\vdash \neg \text{ext } \varepsilon \left(f(e) \right) \neg \text{ext } \varepsilon \left(f(e) \right) \tag{\alpha'}$$

Dies ist wichtig für die Funktion $\text{anz}(\xi)$. Man könnte zunächst befürchten, dass Begriffe von demselben Umfang nach unserm Festsetzungen dieselbe Anzahl erhalten müssten, obwohl unter den einen ein Gegenstand mehr, als unter den andern, nämlich der Begriffsumfang selbst viel, sodass man schliesslich nur eine einzige endliche Anzahl erhielte. Indessen kommt bei $\text{anz}(\varepsilon(\Phi(e)))$ nicht der Begriff $\Phi(\xi)$, sondern $\neg \xi$ $\varepsilon(\Phi(e))$ in Betracht, und unter diesen fällt der Begriffsumfang $\varepsilon(\Phi(e))$ nicht, wenn er auch unter den Begriff $\Phi(\xi)$ fällt.

Wiederholt man die Ableitung von (1) (I, § 55) mit (V'b) statt mit (Vb), so erhält man statt (1) den Satz (\Gamma'):

$$\vdash \neg \alpha = \varepsilon(\Phi(e)) \rightarrow f(a) = a \neg \varepsilon(\Phi(e)) \tag{\text{I}'\text{I}'a)$$

aus dem statt (77) und (82) die Sätze (77') und (82') abzuleiten sind:

$$\vdash \neg \alpha = \varepsilon(\Phi(e)) \rightarrow \left(f(a) \rightarrow F(a) \varepsilon(\Phi(e)) \right) \tag{\text{I}'\text{I}'a)$$

Wir ziehen noch einige Folgerungen.

$$\neg \varepsilon(\Phi(e)) \neg \varepsilon(\Phi(e)) \tag{III}$$

$$(Ia) : \vdash a = \varepsilon(\Phi(e)) \rightarrow \neg \alpha \neg \varepsilon(\Phi(e)) \tag{\beta}$$

$$\vdash \neg \varepsilon(\Phi(e)) \rightarrow a \neg \varepsilon(\Phi(e)) \tag{\alpha'\beta}$$

$$(\text{82'}) : \vdash \neg \varepsilon(\Phi(e)) \rightarrow \left(a \neg \varepsilon(\Phi(e)) \rightarrow f(a) \right) \tag{\text{82'}\beta}$$

$$(\text{Ig}) : \vdash a = \varepsilon(\Phi(e)) \rightarrow \neg \varepsilon(\Phi(e)) \tag{\gamma}$$

Dies folgt ganz so, wie oben (i). Jedoch entsteht hier kein Widerspruch, wie wir gleich sehen werden. \(\gamma\) ist nur ein besonderer Fall von \(\alpha'\).

$$\vdash \neg \varepsilon(\neg \varepsilon \varphi) \rightarrow \neg \varepsilon(\neg \varepsilon \varphi) \rightarrow \neg \varepsilon(\neg \varepsilon \varphi) \neg \varepsilon(\neg \varepsilon \varphi) \tag{\delta}$$

$$(\text{82'}) \vdash \neg \varepsilon(\neg \varepsilon \varphi) \rightarrow \neg \varepsilon(\neg \varepsilon \varphi) \tag{\gamma'}$$

$$(e')$$ ist ein besonderer Fall von (III). Ein Widerspruch ist nicht aufgetreten.

Es würde hier zu weit führen, den Folgen der Ersetzung von (V') durch (V') weiter nachzugehen. Es ist ja nicht zu verkennen, dass vielen Sätzen Unterglieder hinzugefügt werden müssen; aber es ist wohl nicht zu besorgen, dass hieraus wesentliche Hindernisse für die Beweisführung entstehen werden. Immerhin wird eine Durchprüfung aller bisher gefundenen
Als Urproblem der Arithmetik kann man die Frage ansehen: wie fassen wir logische Gegenstände, insbesondere die Zahlen? Wodurch sind wir berechtigt, die Zahlen als Gegenstände anzuerkennen? Wenn dies Problem auch noch nicht so weit gelöst ist, als ich bei der Abfassung dieses Bandes dachte, so zweifle ich doch nicht daran, dass der Weg zur Lösung gefunden ist.

Jena, im Oktober 1902.

Wörterverzeichnis

Die Ziffern geben die Seiten an.

Gebiet (Σ-Gebiet) 169.
Glied (als erstes, zweites Glied einer Relation auftretend) 171.
Grenze (Σ-Grenze von Φ) 187.
Grössengebiet 158, 160.
grösser 185.

Klasse 159.
Klasse endlicher Anzahlen 161.

Logischer Gegenstand 86, 149.

Nullrelation 176.

Positivalklasse 171.
Positivklasse 189.

Relation 160.

Zuerst 2.